IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4187318.html
   My bibliography  Save this article

Experimental Investigation of the Influence of Cellulose Ether on the Floating of Rubber Particles in Mortar

Author

Listed:
  • Jian Liang
  • Bin Zhang
  • Changshun Liu
  • Chao Zhang

Abstract

As a kind of hyperelastic material, rubber can be mixed into mortar (or concrete) to improve the anticracking ability and ductility of concrete. The mixture of rubber can change the internal structure of concrete through physical interaction, without changing the chemical properties of each component in the mortar (or concrete). But since the apparent density of rubber is far less than the density of cement-based materials, rubber particles are likely to separate from cement-based materials in the mixture of rubber and mortar, and consequently, rubber particles will float upward. This study proposes a new method to restrain the rubber particles from floating upward: add cellulose ether in the mortar with a water-cement ratio of 0.45 so as to improve the mobility of mixture. Meanwhile, this study employs the method of quadratic orthogonal rotation combination experiment to carry out research on the influence of the mixing amount of cellulose ether (0∼5.43 kg/m 3 ) and the ratio of rubber substituting for mortar (0∼0.5) on the degree of uniformity, consistency, and 28-day (28 d) strength of crumb rubber mortar, and it also studies the inhibiting effect of cellulose ether on the floating of rubber. The results show that cellulose ether mixed into the mortar can significantly improve the mobility of the mixture and restrain the floating of rubber. But with the increase of the mixing amount of cellulose ether, the 28 d strength of the mortar shows an obvious decreasing trend. This study has a guiding role in the practical application of crumb rubber mortar, crumb rubber concrete, and other lightweight aggregate concrete.

Suggested Citation

  • Jian Liang & Bin Zhang & Changshun Liu & Chao Zhang, 2019. "Experimental Investigation of the Influence of Cellulose Ether on the Floating of Rubber Particles in Mortar," Complexity, Hindawi, vol. 2019, pages 1-12, October.
  • Handle: RePEc:hin:complx:4187318
    DOI: 10.1155/2019/4187318
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4187318.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4187318.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4187318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas, Blessen Skariah & Gupta, Ramesh Chandra, 2016. "A comprehensive review on the applications of waste tire rubber in cement concrete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1323-1333.
    2. Hongyuan Fang & Jianwei Lei & Man Yang & Ziwei Li, 2019. "Analysis of GPR Wave Propagation Using CUDA-Implemented Conformal Symplectic Partitioned Runge-Kutta Method," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Zongwei & Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Hazen, Benjamin & Roubaud, David, 2017. "Sustainable production framework for cement manufacturing firms: A behavioural perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 495-502.
    2. Qing-Zhou Wang & Zhan-Di Chen & Kuo-Ping Lin & Ching-Hsin Wang, 2018. "Estimation and Analysis of Energy Conservation and Emissions Reduction Effects of Warm-Mix Crumb Rubber-Modified Asphalts during Construction Period," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    3. Panagiotis Grammelis & Nikolaos Margaritis & Petros Dallas & Dimitrios Rakopoulos & Georgios Mavrias, 2021. "A Review on Management of End of Life Tires (ELTs) and Alternative Uses of Textile Fibers," Energies, MDPI, vol. 14(3), pages 1-20, January.
    4. Maria Rashidi & Alireza Joshaghani & Maryam Ghodrat, 2020. "Towards Eco-Flowable Concrete Production," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    5. Liu, Lulu & Cai, Guojun & Zhang, Jun & Liu, Xiaoyan & Liu, Kai, 2020. "Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    6. Li, Dan & Lei, Shijun & Lin, Fawei & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2020. "Study of scrap tires pyrolysis – Products distribution and mechanism," Energy, Elsevier, vol. 213(C).
    7. Thomas, Blessen Skariah & Kumar, Sanjeev & Arel, Hasan Sahan, 2017. "Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 550-561.
    8. Patimapon Sukmak & Gampanart Sukmak & Suksun Horpibulsuk & Sippakarn Kassawat & Apichat Suddeepong & Arul Arulrajah, 2021. "Improved Mechanical Properties of Cement-Stabilized Soft Clay Using Garnet Residues and Tire-Derived Aggregates for Subgrade Applications," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    9. Nguyen Duc Luong & Hoang Vinh Long & Ngo Kim Tuan & Nguyen Duy Thai, 2017. "Properties of Concrete Containing Rubber Aggregate Derived From Discarded Tires," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 4(1), pages 12-19.
    10. Marco Valente & Matteo Sambucci & Abbas Sibai & Ettore Musacchi, 2020. "Multi-Physics Analysis for Rubber-Cement Applications in Building and Architectural Fields: A Preliminary Analysis," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    11. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    12. Thomas, Blessen Skariah, 2018. "Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3913-3923.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4187318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.