IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp550-561.html
   My bibliography  Save this article

Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review

Author

Listed:
  • Thomas, Blessen Skariah
  • Kumar, Sanjeev
  • Arel, Hasan Sahan

Abstract

Palm oil fuel ash (POFA) is a waste material generated in power plants as a result of the combustion of palm oil industry waste for the generation of electricity. They are generally disposed to open fields causing traffic hazards besides potential of health hazards and environmental pollution problems. Due to its abundance and high pozzolanic characteristics, many researchers have evaluated its potential as a construction material. This paper presents an overview of some of the published results on the successful utilization of palm oil fuel ash as a supplementary cementitious material and the properties of such concrete at fresh and hardened stages. Studies indicate that there is a promising future for the use of POFA in normal, high strength and self compacting concrete as it shows high strength, low shrinkage and permeability, high resistance to carbonation, chloride, sulfate and acidic environments. At elevated temperature, the POFA concrete perform better than the ordinary Portland cement (OPC) concrete. The summery and discussions provided in this paper should provide new information and knowledge on the applications of greener and sustainable palm oil fuel ash concrete.

Suggested Citation

  • Thomas, Blessen Skariah & Kumar, Sanjeev & Arel, Hasan Sahan, 2017. "Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 550-561.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:550-561
    DOI: 10.1016/j.rser.2017.05.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    2. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    3. Mohammadtaghi Vakili & Mohd. Rafatullah & Mahamad Ibrahim & Babak Salamatinia & Zahra Gholami & Haider Zwain, 2015. "A review on composting of oil palm biomass," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 691-709, August.
    4. Thomas, Blessen Skariah & Gupta, Ramesh Chandra, 2016. "A comprehensive review on the applications of waste tire rubber in cement concrete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1323-1333.
    5. Mekhilef, S. & Siga, S. & Saidur, R., 2011. "A review on palm oil biodiesel as a source of renewable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1937-1949, May.
    6. Dalimin, Mohd Noh, 1995. "Renewable energy update: Malaysia," Renewable Energy, Elsevier, vol. 6(4), pages 435-439.
    7. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    8. Umar, Mohd Shaharin & Jennings, Philip & Urmee, Tania, 2013. "Strengthening the palm oil biomass Renewable Energy industry in Malaysia," Renewable Energy, Elsevier, vol. 60(C), pages 107-115.
    9. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boronina, Alena & Zemlyakov, Dmitriy & Maximov, Maxim & Minchenkova, Olga, 2014. "Analysis and Evaluation of the Competitiveness of Domestic Industries in the Global and Regional Economic Unions and Organizations," Published Papers r90229, Russian Presidential Academy of National Economy and Public Administration.
    2. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashnani, Mohammad Hossein Mohammadi & Johari, Anwar & Hashim, Haslenda & Hasani, Elham, 2014. "A source of renewable energy in Malaysia, why biodiesel?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 244-257.
    2. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    3. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    4. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    6. Lakshmy Naidu & Ravichandran Moorthy, 2021. "A Review of Key Sustainability Issues in Malaysian Palm Oil Industry," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    7. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    8. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    9. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    10. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    11. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    12. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    13. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    14. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    15. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    16. Lim, Chun Hsion & Lim, Steven & How, Bing Shen & Ng, Wendy Pei Qin & Ngan, Sue Lin & Leong, Wei Dong & Lam, Hon Loong, 2021. "A review of industry 4.0 revolution potential in a sustainable and renewable palm oil industry: HAZOP approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
    18. Hannan, M.A. & Begum, R.A. & Abdolrasol, M.G. & Hossain Lipu, M.S. & Mohamed, A. & Rashid, M.M., 2018. "Review of baseline studies on energy policies and indicators in Malaysia for future sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 551-564.
    19. Darshini, Dina & Dwivedi, Puneet & Glenk, Klaus, 2013. "Capturing stakeholders´ views on oil palm-based biofuel and biomass utilisation in Malaysia," Energy Policy, Elsevier, vol. 62(C), pages 1128-1137.
    20. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:550-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.