IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4034258.html
   My bibliography  Save this article

Water-Based Metaheuristics: How Water Dynamics Can Help Us to Solve NP-Hard Problems

Author

Listed:
  • Fernando Rubio
  • Ismael Rodríguez

Abstract

Many water-based optimization metaheuristics have been introduced during the last decade, both for combinatorial and for continuous optimization. Despite the strong similarities of these methods in terms of their underlying natural metaphors (most of them emulate, in some way or another, how drops collaboratively form paths down to the sea), in general the resulting algorithms are quite different in terms of their searching approach or their solution construction approach. For instance, each entity may represent a solution by itself or, alternatively, entities may construct solutions by modifying the landscape while moving. A researcher or practitioner could assume that the degree of similarity between two water-based metaheuristics heavily depends on the similarity of the natural water mechanics they emulate, but this is not the case. In order to bring some clarity to this mosaic of apparently related metaheuristics, in this paper we introduce them, explain their mechanics, and highlight their differences.

Suggested Citation

  • Fernando Rubio & Ismael Rodríguez, 2019. "Water-Based Metaheuristics: How Water Dynamics Can Help Us to Solve NP-Hard Problems," Complexity, Hindawi, vol. 2019, pages 1-13, April.
  • Handle: RePEc:hin:complx:4034258
    DOI: 10.1155/2019/4034258
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4034258.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4034258.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4034258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fred Glover, 1990. "Tabu Search: A Tutorial," Interfaces, INFORMS, vol. 20(4), pages 74-94, August.
    2. Wu, Tai-Hsi & Chung, Shu-Hsing & Chang, Chin-Chih, 2010. "A water flow-like algorithm for manufacturing cell formation problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 346-360, September.
    3. Ahmad Wedyan & Jacqueline Whalley & Ajit Narayanan, 2017. "Hydrological Cycle Algorithm for Continuous Optimization Problems," Journal of Optimization, Hindawi, vol. 2017, pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    2. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    3. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    4. Kolahan, F. & Liang, M., 1998. "An adaptive TS approach to JIT sequencing with variable processing times and sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 109(1), pages 142-159, August.
    5. Ko, Young Dae, 2019. "The airfare pricing and seat allocation problem in full-service carriers and subsidiary low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 92-102.
    6. Piñeyro, Pedro & Viera, Omar, 2010. "The economic lot-sizing problem with remanufacturing and one-way substitution," International Journal of Production Economics, Elsevier, vol. 124(2), pages 482-488, April.
    7. Tarasewich, Peter & McMullen, Patrick R., 2001. "A pruning heuristic for use with multisource product design," European Journal of Operational Research, Elsevier, vol. 128(1), pages 58-73, January.
    8. Daniels, Richard L. & Rummel, Jeffrey L. & Schantz, Robert, 1998. "A model for warehouse order picking," European Journal of Operational Research, Elsevier, vol. 105(1), pages 1-17, February.
    9. Rolland, Erik & Schilling, David A. & Current, John R., 1997. "An efficient tabu search procedure for the p-Median Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 329-342, January.
    10. Martina Fischetti & Michele Monaci, 2016. "Proximity search heuristics for wind farm optimal layout," Journal of Heuristics, Springer, vol. 22(4), pages 459-474, August.
    11. Rex K. Kincaid & Keith E. Laba & Sharon L. Padula, 1997. "Quelling Cabin Noise in Turboprop Aircraft via Active Control," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 229-250, October.
    12. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    13. Sun, Minghe, 2011. "A primogenitary linked quad tree approach for solution storage and retrieval in heuristic binary optimization," European Journal of Operational Research, Elsevier, vol. 209(3), pages 228-240, March.
    14. Enlu Zhou & Shalabh Bhatnagar, 2018. "Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 154-167, February.
    15. Sexton, Randall S. & Alidaee, Bahram & Dorsey, Robert E. & Johnson, John D., 1998. "Global optimization for artificial neural networks: A tabu search application," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 570-584, April.
    16. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    17. White, George M. & Xie, Bill S. & Zonjic, Stevan, 2004. "Using tabu search with longer-term memory and relaxation to create examination timetables," European Journal of Operational Research, Elsevier, vol. 153(1), pages 80-91, February.
    18. Barry R. Cobb & Tim Murray & Jeffrey S. Smith, 2022. "Adjustable consumption model for retirees to balance spending and risk," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(2), pages 420-451, April.
    19. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    20. R Logendran & Y Karim, 2003. "Design of manufacturing cells in the presence of alternative cell locations and material transporters," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1059-1075, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4034258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.