IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3745924.html
   My bibliography  Save this article

Multiobjective Optimal Control for Hydraulic Turbine Governing System Based on an Improved MOGWO Algorithm

Author

Listed:
  • Xin Xia
  • Jie Ji
  • Chao-shun Li
  • Xiaoming Xue
  • Xiaolu Wang
  • Chu Zhang

Abstract

Hydraulic turbine governing system (HTGS) is essential equipment which regulates frequency and power of the power grids. In previous studies, optimal control of HTGS is always aiming at one single operation condition. The variation of operation conditions of HTGS is seldom considered. In this paper, multiobjective optimal function is proposed for HTGS under multiple operation conditions. In order to optimize the solution to the multiobjective problems, a novel multiobjective grey wolf optimizer algorithm with searching factor (sMOGWO) is also proposed with two improvements: adding searching step to search more no-domain solutions nearby the wolves and adjusting control parameters to keep exploration ability in later period. At first, the searching ability of the sMOGWO has been verified on several UF test problems by statistical analysis. And then, the sMOGWO is applied to optimize the solutions of the multiobjective problems of HTGS, while different algorithms are employed for comparison. The experimental results indicate that the sMOGWO is more effective algorithm and improves the control quality of the HTGS under multiple operation conditions.

Suggested Citation

  • Xin Xia & Jie Ji & Chao-shun Li & Xiaoming Xue & Xiaolu Wang & Chu Zhang, 2019. "Multiobjective Optimal Control for Hydraulic Turbine Governing System Based on an Improved MOGWO Algorithm," Complexity, Hindawi, vol. 2019, pages 1-14, May.
  • Handle: RePEc:hin:complx:3745924
    DOI: 10.1155/2019/3745924
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3745924.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3745924.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3745924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Nan, 2019. "Multi-objective optimization of the closure law of guide vanes for pumped storage units," Renewable Energy, Elsevier, vol. 139(C), pages 302-312.
    2. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    3. Tian Tian & Changyu Liu & Qi Guo & Yi Yuan & Wei Li & Qiurong Yan, 2018. "An Improved Ant Lion Optimization Algorithm and Its Application in Hydraulic Turbine Governing System Parameter Identification," Energies, MDPI, vol. 11(1), pages 1-15, January.
    4. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
    2. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    3. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    4. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    6. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    7. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    8. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    9. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Socio-techno-economic design of hybrid renewable energy system using optimization techniques," Renewable Energy, Elsevier, vol. 119(C), pages 459-472.
    10. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    11. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastian & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2018. "Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil," Energy, Elsevier, vol. 142(C), pages 33-45.
    12. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    14. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    15. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    16. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    17. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    18. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    19. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    20. Zahedi, R. & Ardehali, M.M., 2020. "Power management for storage mechanisms including battery, supercapacitor, and hydrogen of autonomous hybrid green power system utilizing multiple optimally-designed fuzzy logic controllers," Energy, Elsevier, vol. 204(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3745924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.