IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3204073.html
   My bibliography  Save this article

Improving the Complexity of the Lorenz Dynamics

Author

Listed:
  • María Pilar Mareca
  • Borja Bordel

Abstract

A new four-dimensional, hyperchaotic dynamic system, based on Lorenz dynamics, is presented. Besides, the most representative dynamics which may be found in this new system are located in the phase space and are analyzed here. The new system is especially designed to improve the complexity of Lorenz dynamics, which, despite being a paradigm to understand the chaotic dissipative flows, is a very simple example and shows great vulnerability when used in secure communications. Here, we demonstrate the vulnerability of the Lorenz system in a general way. The proposed 4D system increases the complexity of the Lorenz dynamics. The trajectories of the novel system include structures going from chaos to hyperchaos and chaotic-transient solutions. The symmetry and the stability of the proposed system are also studied. First return maps, Poincaré sections, and bifurcation diagrams allow characterizing the global system behavior and locating some coexisting structures. Numerical results about the first return maps, Poincaré cross sections, Lyapunov spectrum, and Kaplan-Yorke dimension demonstrate the complexity of the proposed equations.

Suggested Citation

  • María Pilar Mareca & Borja Bordel, 2017. "Improving the Complexity of the Lorenz Dynamics," Complexity, Hindawi, vol. 2017, pages 1-16, January.
  • Handle: RePEc:hin:complx:3204073
    DOI: 10.1155/2017/3204073
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/3204073.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/3204073.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3204073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xingyuan & Wang, Mingjun, 2008. "A hyperchaos generated from Lorenz system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3751-3758.
    2. Yu, Simin & Tang, Wallace K.S., 2009. "Tetrapterous butterfly attractors in modified Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1740-1749.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunjie Li & Yawen Wu & Xuebing Zhang, 2021. "Analysis and Synchronization of a New Hyperchaotic System with Exponential Term," Mathematics, MDPI, vol. 9(24), pages 1-16, December.
    2. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Fan, Chunlei & Ding, Qun, 2022. "A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Fuchen Zhang & Rui Chen & Xiusu Chen, 2017. "Analysis of a Generalized Lorenz–Stenflo Equation," Complexity, Hindawi, vol. 2017, pages 1-6, December.
    5. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    6. Ojoniyi, Olurotimi S. & Njah, Abdulahi N., 2016. "A 5D hyperchaotic Sprott B system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 172-181.
    7. Li, Ming & Wang, Mengdie & Fan, Haiju & An, Kang & Liu, Guoqi, 2022. "A novel plaintext-related chaotic image encryption scheme with no additional plaintext information," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    8. Xiaofei Zhou & Junmei Li & Yulan Wang & Wei Zhang, 2019. "Numerical Simulation of a Class of Hyperchaotic System Using Barycentric Lagrange Interpolation Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    9. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Shi, Fan-feng & Li, Tao & Hu, Hao-yu & Li, Yi-fei & Shan, Dan & Jiang, Dong, 2024. "Heterogeneous parallel computing based real-time chaotic video encryption and its application to drone-oriented secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Luo, Yuyao & Fan, Chunlei & Xu, Chengbin & Li, Xinyu, 2024. "Design and FPGA implementation of a high-speed PRNG based on an n-D non-degenerate chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Zhou, Shuang & Wang, Xingyuan, 2020. "Simple estimation method for the second-largest Lyapunov exponent of chaotic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Zhou, Rong & Yu, Simin, 2024. "Break an enhanced plaintext-related chaotic image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Fuchen Zhang & Min Xiao, 2019. "Complex Dynamical Behaviors of Lorenz-Stenflo Equations," Mathematics, MDPI, vol. 7(6), pages 1-9, June.
    15. Liu, Hongjun & Zhang, Yingqian & Kadir, Abdurahman & Xu, Yanqiu, 2019. "Image encryption using complex hyper chaotic system by injecting impulse into parameters," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 83-93.
    16. Contreras-Reyes, Javier E., 2021. "Chaotic systems with asymmetric heavy-tailed noise: Application to 3D attractors," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Yu, Mengyao & Sun, Kehui & Liu, Wenhao & He, Shaobo, 2018. "A hyperchaotic map with grid sinusoidal cavity," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 107-117.
    18. Fuchen Zhang, 2019. "Analysis of a Lorenz-Like Chaotic System by Lyapunov Functions," Complexity, Hindawi, vol. 2019, pages 1-6, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3204073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.