IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v106y2018icp107-117.html
   My bibliography  Save this article

A hyperchaotic map with grid sinusoidal cavity

Author

Listed:
  • Yu, Mengyao
  • Sun, Kehui
  • Liu, Wenhao
  • He, Shaobo

Abstract

Based on closed-loop modulation coupling pattern and the model of sinusoidal cavity, a high-dimensional sinusoidal cavity hyperchaotic system is proposed. The number of sinusoidal cavities is controlled by the system parameters. By designing a piecewise-linear controller, the grid sinusoidal cavity attractors are obtained. The equilibrium points are theoretically analyzed through mathematical calculation. Taking the two-dimensional grid sinusoidal cavity hyperchaotic map as an example, dynamics of the system are analyzed by phase diagram, equilibrium points, Lyapunov exponents spectrum, bifurcation diagram, complexity and distribution characteristics. The results show that it has rich dynamical behaviors, including complicated phase space trajectory, hyperchaotic behavior, large maximum Lyapunov exponent and typical bifurcations. The proposed hyperchaotic map has advantages in complexity and distribution in the whole parameter space. Therefore, it has good application prospects in secure communication.

Suggested Citation

  • Yu, Mengyao & Sun, Kehui & Liu, Wenhao & He, Shaobo, 2018. "A hyperchaotic map with grid sinusoidal cavity," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 107-117.
  • Handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:107-117
    DOI: 10.1016/j.chaos.2017.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917304599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xingyuan & Wang, Mingjun, 2008. "A hyperchaos generated from Lorenz system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3751-3758.
    2. Zhang, Ying-Qian & Wang, Xing-Yuan, 2014. "Spatiotemporal chaos in mixed linear–nonlinear coupled logistic map lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 104-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Wanting & Sun, Kehui & He, Shaobo & Wang, Huihai & Liu, Wenhao, 2023. "A class of m-dimension grid multi-cavity hyperchaotic maps and its application," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Fan, Zhenyi & Sun, Xu & Zhao, Jingjing & Zhang, Chenkai & Du, Baoxiang, 2024. "Dynamics analysis and feasibility verification of a 3D discrete memristive chaotic map with multi-vortex-like volume behavior," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Li, Chunbiao & Gu, Zhenyu & Liu, Zuohua & Jafari, Sajad & Kapitaniak, Tomasz, 2021. "Constructing chaotic repellors," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Wang, Lingyu & Sun, Kehui & Peng, Yuexi & He, Shaobo, 2020. "Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Wu, Chenyang & Sun, Kehui, 2022. "Generation of multicavity maps with different behaviours and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ming & Wang, Mengdie & Fan, Haiju & An, Kang & Liu, Guoqi, 2022. "A novel plaintext-related chaotic image encryption scheme with no additional plaintext information," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Xiaofei Zhou & Junmei Li & Yulan Wang & Wei Zhang, 2019. "Numerical Simulation of a Class of Hyperchaotic System Using Barycentric Lagrange Interpolation Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    3. Shunjie Li & Yawen Wu & Xuebing Zhang, 2021. "Analysis and Synchronization of a New Hyperchaotic System with Exponential Term," Mathematics, MDPI, vol. 9(24), pages 1-16, December.
    4. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Zhang, Huayong & Guo, Fenglu & Zou, Hengchao & Zhao, Lei & Wang, Zhongyu & Yuan, Xiaotong & Liu, Zhao, 2024. "Refuge-driven spatiotemporal chaos in a discrete predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. María Pilar Mareca & Borja Bordel, 2017. "Improving the Complexity of the Lorenz Dynamics," Complexity, Hindawi, vol. 2017, pages 1-16, January.
    7. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    8. Lu, Guangqing & Smidtaite, Rasa & Navickas, Zenonas & Ragulskis, Minvydas, 2018. "The Effect of Explosive Divergence in a Coupled Map Lattice of Matrices," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 308-313.
    9. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Shi, Fan-feng & Li, Tao & Hu, Hao-yu & Li, Yi-fei & Shan, Dan & Jiang, Dong, 2024. "Heterogeneous parallel computing based real-time chaotic video encryption and its application to drone-oriented secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Luo, Yuyao & Fan, Chunlei & Xu, Chengbin & Li, Xinyu, 2024. "Design and FPGA implementation of a high-speed PRNG based on an n-D non-degenerate chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Zhou, Shuang & Wang, Xingyuan, 2020. "Simple estimation method for the second-largest Lyapunov exponent of chaotic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Zhou, Rong & Yu, Simin, 2024. "Break an enhanced plaintext-related chaotic image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Fuchen Zhang & Min Xiao, 2019. "Complex Dynamical Behaviors of Lorenz-Stenflo Equations," Mathematics, MDPI, vol. 7(6), pages 1-9, June.
    15. Fan, Chunlei & Ding, Qun, 2022. "A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Sun, Yu-jie & Zhang, Hao & Wang, Xing-yuan & Wang, Xiao-qing & Yan, Peng-fei, 2020. "2D Non-adjacent coupled map lattice with q and its applications in image encryption," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    17. Fuchen Zhang & Rui Chen & Xiusu Chen, 2017. "Analysis of a Generalized Lorenz–Stenflo Equation," Complexity, Hindawi, vol. 2017, pages 1-6, December.
    18. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    19. Liu, Hongjun & Zhang, Yingqian & Kadir, Abdurahman & Xu, Yanqiu, 2019. "Image encryption using complex hyper chaotic system by injecting impulse into parameters," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 83-93.
    20. Ojoniyi, Olurotimi S. & Njah, Abdulahi N., 2016. "A 5D hyperchaotic Sprott B system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 172-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:107-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.