IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p1740-1749.html
   My bibliography  Save this article

Tetrapterous butterfly attractors in modified Lorenz systems

Author

Listed:
  • Yu, Simin
  • Tang, Wallace K.S.

Abstract

In this paper, the Lorenz-type tetrapterous butterfly attractors are firstly reported. With the introduction of multiple segment piecewise linear functions, these interesting and complex attractors are obtained from two different modified Lorenz models. This approach are verified in both simulations and experiments.

Suggested Citation

  • Yu, Simin & Tang, Wallace K.S., 2009. "Tetrapterous butterfly attractors in modified Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1740-1749.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1740-1749
    DOI: 10.1016/j.chaos.2008.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Wajdi M., 2005. "Generation and control of multi-scroll chaotic attractors in fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 727-735.
    2. Čelikovský, Sergej & Chen, Guanrong, 2005. "On the generalized Lorenz canonical form," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1271-1276.
    3. Yu, Simin & Tang, Wallace K.S., 2009. "Generation of n×m-scroll attractors in a two-port RCL network with hysteresis circuits," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 821-830.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras-Reyes, Javier E., 2021. "Chaotic systems with asymmetric heavy-tailed noise: Application to 3D attractors," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. María Pilar Mareca & Borja Bordel, 2017. "Improving the Complexity of the Lorenz Dynamics," Complexity, Hindawi, vol. 2017, pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zengqiang & Yang, Yong & Yuan, Zhuzhi, 2008. "A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1187-1196.
    2. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    3. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    4. Gao, Tiegang & Chen, Zengqiang & Gu, Qiaolun & Yuan, Zhuzhi, 2008. "A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 390-397.
    5. Li, Damei & Wu, Xiaoqun & Lu, Jun-an, 2009. "Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1290-1296.
    6. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    7. Wang, Xia, 2009. "Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2208-2217.
    8. Ahmad, Wajdi M., 2006. "A simple multi-scroll hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1213-1219.
    9. Zhiqin Qiao & Xianyi Li, 2014. "Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(3), pages 264-283, May.
    10. Qi, Guoyuan & van Wyk, Barend Jacobus & van Wyk, Michaël Antonie, 2009. "A four-wing attractor and its analysis," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2016-2030.
    11. Aguirre-Hernández, B. & Campos-Cantón, E. & López-Renteria, J.A. & Díaz González, E.C., 2015. "A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 100-106.
    12. Xiong, Xiaohua & Wang, Junwei, 2009. "Conjugate Lorenz-type chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 923-929.
    13. Jiang, Yongxin & Sun, Jianhua, 2007. "Si’lnikov homoclinic orbits in a new chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 150-159.
    14. Wang, Jiezhi & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "Existence of a new three-dimensional chaotic attractor," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3053-3057.
    15. Dong, Chengwei & Liu, Huihui & Jie, Qi & Li, Hantao, 2022. "Topological classification of periodic orbits in the generalized Lorenz-type system with diverse symbolic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Chen, Liping & Pan, Wei & Wang, Kunpeng & Wu, Ranchao & Machado, J. A. Tenreiro & Lopes, António M., 2017. "Generation of a family of fractional order hyper-chaotic multi-scroll attractors," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 244-255.
    17. Zhou, Shangbo & Li, Hua & Zhu, Zhengzhou, 2008. "Chaos control and synchronization in a fractional neuron network system," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 973-984.
    18. Wang, Junwei & Zhao, Meichun & Zhang, Yanbin & Xiong, Xiaohua, 2007. "S˘i’lnikov-type orbits of Lorenz-family systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 438-446.
    19. Chen, Liping & Pan, Wei & Wu, Ranchao & Wang, Kunpeng & He, Yigang, 2016. "Generation and circuit implementation of fractional-order multi-scroll attractors," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 22-31.
    20. Yalçin, Müştak E., 2007. "Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1659-1666.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1740-1749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.