IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005331.html
   My bibliography  Save this article

A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents

Author

Listed:
  • Fan, Chunlei
  • Ding, Qun

Abstract

Due to the limited machine word length of hardware devices, the dynamics of digital chaotic systems will degenerate. To combat this issue, we proposed a universal method that is based on singular value decomposition (SVD), which can reversely construct non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents by controlling pre-specified singular values. To assess the practicability and effectiveness of the method, we construct a 6-dimensional non-degenerate hyperchaotic system as an example. Furthermore, based on the hyperchaotic system, a pseudorandom number generator (PRNG) with desirable statistical characteristics is designed for image encryption. Numerical simulations were performed to evaluate the security of the image encryption algorithm in terms of histogram, information entropy, differential attack test, etc. The proposed non-degenerate hyperchaotic system can be effectively applied in the field of multimedia data encryption and information security.

Suggested Citation

  • Fan, Chunlei & Ding, Qun, 2022. "A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005331
    DOI: 10.1016/j.chaos.2022.112323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xingyuan & Wang, Mingjun, 2008. "A hyperchaos generated from Lorenz system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3751-3758.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surendar, R. & Muthtamilselvan, M. & Ahn, Kyubok, 2024. "Stochastic disturbance with finite-time chaos stabilization and synchronization for a fractional-order nonautonomous hybrid nonlinear complex system via a sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Huiyan Zhong & Guodong Li & Xiangliang Xu & Xiaoming Song, 2022. "Image Encryption Algorithm Based on a Novel Wide-Range Discrete Hyperchaotic Map," Mathematics, MDPI, vol. 10(15), pages 1-23, July.
    3. Fan, Chunlei & Ding, Qun, 2023. "Constructing n-dimensional discrete non-degenerate hyperchaotic maps using QR decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Ding, Dawei & Wang, Wei & Yang, Zongli & Hu, Yongbing & Wang, Jin & Wang, Mouyuan & Niu, Yan & Zhu, Haifei, 2023. "An n-dimensional modulo chaotic system with expected Lyapunov exponents and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunjie Li & Yawen Wu & Xuebing Zhang, 2021. "Analysis and Synchronization of a New Hyperchaotic System with Exponential Term," Mathematics, MDPI, vol. 9(24), pages 1-16, December.
    2. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Fuchen Zhang & Rui Chen & Xiusu Chen, 2017. "Analysis of a Generalized Lorenz–Stenflo Equation," Complexity, Hindawi, vol. 2017, pages 1-6, December.
    4. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    5. Ojoniyi, Olurotimi S. & Njah, Abdulahi N., 2016. "A 5D hyperchaotic Sprott B system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 172-181.
    6. Li, Ming & Wang, Mengdie & Fan, Haiju & An, Kang & Liu, Guoqi, 2022. "A novel plaintext-related chaotic image encryption scheme with no additional plaintext information," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Xiaofei Zhou & Junmei Li & Yulan Wang & Wei Zhang, 2019. "Numerical Simulation of a Class of Hyperchaotic System Using Barycentric Lagrange Interpolation Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    8. María Pilar Mareca & Borja Bordel, 2017. "Improving the Complexity of the Lorenz Dynamics," Complexity, Hindawi, vol. 2017, pages 1-16, January.
    9. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Shi, Fan-feng & Li, Tao & Hu, Hao-yu & Li, Yi-fei & Shan, Dan & Jiang, Dong, 2024. "Heterogeneous parallel computing based real-time chaotic video encryption and its application to drone-oriented secure communication," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    11. Luo, Yuyao & Fan, Chunlei & Xu, Chengbin & Li, Xinyu, 2024. "Design and FPGA implementation of a high-speed PRNG based on an n-D non-degenerate chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Zhou, Shuang & Wang, Xingyuan, 2020. "Simple estimation method for the second-largest Lyapunov exponent of chaotic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Zhou, Rong & Yu, Simin, 2024. "Break an enhanced plaintext-related chaotic image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Fuchen Zhang & Min Xiao, 2019. "Complex Dynamical Behaviors of Lorenz-Stenflo Equations," Mathematics, MDPI, vol. 7(6), pages 1-9, June.
    15. Liu, Hongjun & Zhang, Yingqian & Kadir, Abdurahman & Xu, Yanqiu, 2019. "Image encryption using complex hyper chaotic system by injecting impulse into parameters," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 83-93.
    16. Yu, Mengyao & Sun, Kehui & Liu, Wenhao & He, Shaobo, 2018. "A hyperchaotic map with grid sinusoidal cavity," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 107-117.
    17. Fuchen Zhang, 2019. "Analysis of a Lorenz-Like Chaotic System by Lyapunov Functions," Complexity, Hindawi, vol. 2019, pages 1-6, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.