IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1890643.html
   My bibliography  Save this article

The Spreading of Information in Online Social Networks through Cellular Automata

Author

Listed:
  • Yuda Wang
  • Gang Li

Abstract

Epidemic dynamics in complex networks have been extensively studied. Due to the similarity between information and disease spreading, most studies on information dynamics use epidemic models and merely consider the characteristics of online social networks and individual’s cognitive. In this paper, we propose an online social networks information spreading (OSIS) model combining epidemic models and individual’s cognitive psychology. Then we design a cellular automata (CA) method to provide a computational method for OSIS. Finally, we use OSIS and CA to simulate the spreading and evolution of information in online social networks. The experimental results indicate that OSIS is effective. Firstly, individual’s cognition affects online information spreading. When infection rate is low, it prevents the spreading, whereas when infection rate is sufficiently high, it promotes transmission. Secondly, the explosion of online social network scale and the convenience of we-media greatly increase the ability of information dissemination. Lastly, the demise of information is affected by both time and heat decay rather than probability. We believe that these findings are in the right direction for perceiving information spreading in online social networks and useful for public management policymakers seeking to design efficient programs.

Suggested Citation

  • Yuda Wang & Gang Li, 2018. "The Spreading of Information in Online Social Networks through Cellular Automata," Complexity, Hindawi, vol. 2018, pages 1-9, November.
  • Handle: RePEc:hin:complx:1890643
    DOI: 10.1155/2018/1890643
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/1890643.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/1890643.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1890643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Wei & Chen, Xiao-Long & Zhong, Lin-Feng, 2018. "Social contagions with heterogeneous credibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 604-610.
    2. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    3. Henrique Gagliardi & Domingos Alves, 2010. "Small-World Effect in Epidemics Using Cellular Automata," Mathematical Population Studies, Taylor & Francis Journals, vol. 17(2), pages 79-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonidas Sakalauskas & Vitalij Denisov & Aiste Dirzyte, 2023. "Hybrid Modeling of Anxiety Propagation in Response to Threat Stimuli Flow," Mathematics, MDPI, vol. 11(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    2. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    3. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    4. Gabrielle Demange, 2012. "On the influence of a ranking system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 431-455, July.
    5. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    6. Pier Paolo Saviotti, 2011. "Knowledge, Complexity and Networks," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 6, Edward Elgar Publishing.
    7. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    8. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    9. Sun, Bingbin & Yao, Jialing & Xi, Lifeng, 2019. "Eigentime identities of fractal sailboat networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 338-349.
    10. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    11. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    12. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    13. Haider, Sajjad & Mariotti, Francesca, 2016. "The orchestration of alliance portfolios: The role of alliance portfolio capability," Scandinavian Journal of Management, Elsevier, vol. 32(3), pages 127-141.
    14. Lotfi, Nastaran & Rodrigues, Francisco A., 2022. "On the effect of memory on the Prisoner’s Dilemma game in correlated networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    16. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    17. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    18. Csárdi, Gábor & Strandburg, Katherine J. & Zalányi, László & Tobochnik, Jan & Érdi, Péter, 2007. "Modeling innovation by a kinetic description of the patent citation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 783-793.
    19. Wang, Yi & Cao, Jinde & Jin, Zhen & Zhang, Haifeng & Sun, Gui-Quan, 2013. "Impact of media coverage on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5824-5835.
    20. Du, Siyuan & Guo, Chunxiang & Jin, Maozhu, 2016. "Agent-based simulation on tourists’ congestion control during peak travel period using Logit model," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 187-194.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1890643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.