IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1480392.html
   My bibliography  Save this article

The Improved Antlion Optimizer and Artificial Neural Network for Chinese Influenza Prediction

Author

Listed:
  • Hongping Hu
  • Yangyang Li
  • Yanping Bai
  • Juping Zhang
  • Maoxing Liu

Abstract

The antlion optimizer (ALO) is a new swarm-based metaheuristic algorithm for optimization, which mimics the hunting mechanism of antlions in nature. Aiming at the shortcoming that ALO has unbalanced exploration and development capability for some complex optimization problems, inspired by the particle swarm optimization (PSO), the updated position of antlions in elitism operator of ALO is improved, and thus the improved ALO (IALO) is obtained. The proposed IALO is compared against sine cosine algorithm (SCA), PSO, Moth-flame optimization algorithm (MFO), multi-verse optimizer (MVO), and ALO by performing on 23 classic benchmark functions. The experimental results show that the proposed IALO outperforms SCA, PSO, MFO, MVO, and ALO according to the average values and the convergence speeds. And the proposed IALO is tested to optimize the parameters of BP neural network for predicting the Chinese influenza and the predicted model is built, written as IALO-BPNN, which is against the models: BPNN, SCA-BPNN, PSO-BPNN, MFO-BPNN, MVO-BPNN, and ALO-BPNN. It is shown that the predicted model IALO-BPNN has smaller errors than other six predicted models, which illustrates that the IALO has potentiality to optimize the weights and basis of BP neural network for predicting the Chinese influenza effectively. Therefore, the proposed IALO is an effective and efficient algorithm suitable for optimization problems.

Suggested Citation

  • Hongping Hu & Yangyang Li & Yanping Bai & Juping Zhang & Maoxing Liu, 2019. "The Improved Antlion Optimizer and Artificial Neural Network for Chinese Influenza Prediction," Complexity, Hindawi, vol. 2019, pages 1-12, August.
  • Handle: RePEc:hin:complx:1480392
    DOI: 10.1155/2019/1480392
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1480392.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1480392.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1480392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hu, Hongping & Wang, Haiyan & Bai, Yanping & Liu, Maoxing, 2019. "Determination of endometrial carcinoma with gene expression based on optimized Elman neural network," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 204-214.
    2. Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
    3. Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    2. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    3. Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
    4. Sugai Han & Ansheng Li & Hongchao Wang & Xiaoyun Gong & Liangwen Wang & Yixiang Huang & Yanming Li & Wenliao Du, 2020. "A health management system for large vertical mill," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.
    5. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    7. Pegah Eslamieh & Mehdi Shajari & Ahmad Nickabadi, 2023. "User2Vec: A Novel Representation for the Information of the Social Networks for Stock Market Prediction Using Convolutional and Recurrent Neural Networks," Mathematics, MDPI, vol. 11(13), pages 1-26, July.
    8. Hyungjin Ko & Jaewook Lee & Junyoung Byun & Bumho Son & Saerom Park, 2019. "Loss-Driven Adversarial Ensemble Deep Learning for On-Line Time Series Analysis," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    9. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    10. Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    12. Yang, Jinhang & Wang, Xin & Shen, Boxiong & Hu, Zhenzhong & Xu, Lianfei & Yang, Shuo, 2020. "Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation," Renewable Energy, Elsevier, vol. 161(C), pages 963-971.
    13. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    14. Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    15. Becker, Janis & Leschinski, Christian, 2018. "Directional Predictability of Daily Stock Returns," Hannover Economic Papers (HEP) dp-624, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    17. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    18. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    19. Zou, Songchun & Zhao, Wanzhong, 2020. "Energy optimization strategy of vehicle DCS system based on APSO algorithm," Energy, Elsevier, vol. 208(C).
    20. Ao Yang & Qing Ye & Jia Zhai, 2024. "Volatility forecasting with Hybrid‐long short‐term memory models: Evidence from the COVID‐19 period," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2766-2786, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1480392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.