IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1228-d104627.html
   My bibliography  Save this article

Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models

Author

Listed:
  • Yi-Chung Hu

    (College of Management & College of Tourism, Fujian Agriculture and Forestry University, Fuzhou City 35000, China
    Department of Business Administration, Chung Yuan Christian University, Chung Li Dist., Taoyuan City 32023, Taiwan)

Abstract

Accurate prediction of foreign tourist numbers is crucial for each country to devise sustainable tourism development policies. Tourism time series data often have significant temporal fluctuation, so Grey–Markov models based on a grey model with a first order differential equation and one variable, GM(1,1), can be appropriate. To further improve prediction accuracy from Grey–Markov models, this study incorporates soft computing techniques to estimate a modifiable range for a predicted value, and determine individual state bounds for the Markov chain. A new residual value is formulated by summing the transition probability matrices with different steps. The proposed grey prediction model was applied to foreign tourist forecasting using historical annual data collected from Taiwan Tourism Bureau and China National Tourism Administration. The experimental results show that the proposed grey prediction model performs well in comparison with other Grey–Markov models considered.

Suggested Citation

  • Yi-Chung Hu, 2017. "Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models," Sustainability, MDPI, vol. 9(7), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1228-:d:104627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    2. Chang-Jui Lin & Hsueh-Fang Chen & Tian-Shyug Lee, 2011. "Forecasting Tourism Demand Using Time Series, Artificial Neural Networks and Multivariate Adaptive Regression Splines:Evidence from Taiwan," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 2(2), pages 14-24, May.
    3. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    4. Yi-Chung Hu, 2017. "Nonadditive Grey Prediction Using Functional-Link Net for Energy Demand Forecasting," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
    5. Yi-Chung Hu & Peng Jiang, 2017. "Forecasting energy demand using neural-network-based grey residual modification models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 556-565, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
    2. Che-Jung Chang & Guiping Li & Shao-Qing Zhang & Kun-Peng Yu, 2019. "Employing a Fuzzy-Based Grey Modeling Procedure to Forecast China’s Sulfur Dioxide Emissions," IJERPH, MDPI, vol. 16(14), pages 1-10, July.
    3. Hang Jiang & Peiyi Kong & Yi-Chung Hu & Peng Jiang, 2021. "Forecasting China’s CO2 emissions by considering interaction of bilateral FDI using the improved grey multivariable Verhulst model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 225-240, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
    2. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    3. Yi-Chung Hu, 2021. "Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 315-331, February.
    4. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
    5. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
    6. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    7. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    9. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    10. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    11. George C. Efthimiou & Panos Kalimeris & Spyros Andronopoulos & John G. Bartzis, 2018. "Statistical Projection of Material Intensity: Evidence from the Global Economy and 107 Countries," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1465-1472, December.
    12. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    13. V. R. Bityukova, 2022. "Environmental Consequences of the Transformation of the Sectoral Structure of the Economy of Russian Regions and Cities in the Post-Soviet Period," Regional Research of Russia, Springer, vol. 12(1), pages 96-111, March.
    14. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    15. Jinli Duan & Feng Jiao & Qishan Zhang & Zhibin Lin, 2017. "Predicting Urban Medical Services Demand in China: An Improved Grey Markov Chain Model by Taylor Approximation," IJERPH, MDPI, vol. 14(8), pages 1-12, August.
    16. Ankit Kumar Srivastava & Ajay Shekhar Pandey & Rajvikram Madurai Elavarasan & Umashankar Subramaniam & Saad Mekhilef & Lucian Mihet-Popa, 2021. "A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 14(24), pages 1-16, December.
    17. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    18. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    19. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    20. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1228-:d:104627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.