IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1140-d103007.html
   My bibliography  Save this article

Comparing Performance of Biomass Gasifier Stoves: Influence of a Multi-Context Approach

Author

Listed:
  • Wouter C. Kersten

    (Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands)

  • Nguyen H. Long

    (Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands)

  • Jan Carel Diehl

    (Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands)

  • Marcel R. M. Crul

    (Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
    Research Group Open Innivation, NHL University of Applied Science, 8917 DD Leeuwarden, The Netherlands)

  • Jo M. L. Van Engelen

    (Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
    Faculty of Economics and Business, University of Groningen, 9747 AE Groningen, The Netherlands)

Abstract

Millions of people worldwide die prematurely or suffer from severe health ailments due to cooking equipment that causes unhealthy doses of (household) air pollution. Many attempts to address this have fallen short because technology was not improved sufficiently or the way it was introduced constituted an ill fit with the broader “cooking eco-system”. In terms of technology, (biomass) gasifier stoves look promising on all three sustainability dimensions (people, planet, profit) but have not been adopted on a substantial scale across cultures and regions either. We therefore used a design approach that takes multiple contexts (target groups) into account and compared the performance of a gasifier stove that was developed following this multi-context approach with four previous gasifier versions. With the comparative assessment using criteria well beyond mere technological performance we found that it performed better than these versions as well as than what could be expected based on historical learning, while providing additional systemic advantages. These results encourage verification of the value of the multi-context approach in more settings while providing clues for refinement of the assessment method.

Suggested Citation

  • Wouter C. Kersten & Nguyen H. Long & Jan Carel Diehl & Marcel R. M. Crul & Jo M. L. Van Engelen, 2017. "Comparing Performance of Biomass Gasifier Stoves: Influence of a Multi-Context Approach," Sustainability, MDPI, vol. 9(7), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1140-:d:103007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Levy, 1994. "Chaos theory and strategy: Theory, application, and managerial implications," Strategic Management Journal, Wiley Blackwell, vol. 15(S2), pages 167-178, June.
    2. Kaplinsky, Raphael, 2011. "Schumacher meets Schumpeter: Appropriate technology below the radar," Research Policy, Elsevier, vol. 40(2), pages 193-203, March.
    3. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    4. Bensch, Gunther & Peters, Jörg, 2015. "The intensive margin of technology adoption – Experimental evidence on improved cooking stoves in rural Senegal," Journal of Health Economics, Elsevier, vol. 42(C), pages 44-63.
    5. Yuting Qiu & Yiyang Fan, 2013. "Rethinking Global Innovation Strategy: Emerging Market Perspectives," Business and Management Research, Business and Management Research, Sciedu Press, vol. 2(3), pages 33-41, September.
    6. Vahlne, Niklas & Ahlgren, Erik O., 2014. "Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations," Energy Policy, Elsevier, vol. 66(C), pages 484-495.
    7. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2014. "A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 580-603.
    8. Bielecki, Christopher & Wingenbach, Gary, 2014. "Rethinking improved cookstove diffusion programs: A case study of social perceptions and cooking choices in rural Guatemala," Energy Policy, Elsevier, vol. 66(C), pages 350-358.
    9. Francesco Vitali & Mentore Vaccari, 2014. "Socio-Economic Survey as a Support Tool during the Scaling Up of Improved Stoves in the Logone Valley (Chad/Cameroon)," Sustainability, MDPI, vol. 6(3), pages 1-21, March.
    10. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    2. Jan, Inayatullah & Lohano, Heman Das, 2021. "Uptake of energy efficient cookstoves in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    4. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    5. Gould, Carlos F. & Urpelainen, Johannes, 2018. "LPG as a clean cooking fuel: Adoption, use, and impact in rural India," Energy Policy, Elsevier, vol. 122(C), pages 395-408.
    6. Jianghua Zhou & Hao Jiao & Jizhen Li, 2017. "Providing Appropriate Technology for Emerging Markets: Case Study on China’s Solar Thermal Industry," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    7. Bensch, Gunther & Kluve, Jochen & Stöterau, Jonathan, 2016. "The market-based dissemination of modern-energy products as a business model for rural entrepreneurs: Evidence from Kenya," Ruhr Economic Papers 635, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.
    9. Edwina Fingleton-Smith, 2022. "Smoke and mirrors—the complexities of cookstove adoption and use in Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3926-3946, March.
    10. Thacker, Kendall S. & Barger, K. McCall & Mattson, Christopher A., 2017. "Balancing technical and user objectives in the redesign of a peruvian cookstove," Development Engineering, Elsevier, vol. 2(C), pages 12-19.
    11. Robert Ugochukwu Onyeneke & Chinyere Augusta Nwajiuba & Jane Munonye & Uwazie Iyke Uwazie & Nkechinyere Uwajumogu & Christian Obioma Uwadoka & Jonathan Ogbeni Aligbe, 2019. "Improved Cook-stoves and Environmental and Health Outcomes: Lessons from Cross River State, Nigeria," IJERPH, MDPI, vol. 16(19), pages 1-13, September.
    12. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    13. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    14. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    15. Prommer, Lisa & Tiberius, Victor & Kraus, Sascha, 2020. "Exploring the future of startup leadership development," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    16. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    17. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    18. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    19. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    20. Zhang, Hong & Gu, Chao-lin & Gu, Lu-wen & Zhang, Yan, 2011. "The evaluation of tourism destination competitiveness by TOPSIS & information entropy – A case in the Yangtze River Delta of China," Tourism Management, Elsevier, vol. 32(2), pages 443-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1140-:d:103007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.