IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v66y2014icp484-495.html
   My bibliography  Save this article

Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations

Author

Listed:
  • Vahlne, Niklas
  • Ahlgren, Erik O.

Abstract

Despite the long history of cook stove programs, very few have been successful, often only in areas where biomass is purchased or there is a biomass shortage. Several studies have described how rural households generally rely on several different fuels; which fuels are used may depend on various household characteristics such as location and income. This article explores possible consequences of variations in fuel usage for improved cook stove programs and how this may vary between different areas. Reductions of CO2 equivalent emissions and monetary savings are calculated for hypothetical cook stove deployment using data from a rural energy survey in the Vĩnh Phúc province of northern Vietnam. The results indicate that the areas may respond differently to the various stove options, both in terms of economy and emission reductions. Furthermore, there are large differences in emission reduction calculations when only Kyoto-gases are included and when non-Kyoto greenhouse agents are added. Assumptions regarding household behavior and stove efficiencies have large impacts on the results, indicating a need for further research on how improved cook stoves may influence households’ fuel choices.

Suggested Citation

  • Vahlne, Niklas & Ahlgren, Erik O., 2014. "Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations," Energy Policy, Elsevier, vol. 66(C), pages 484-495.
  • Handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:484-495
    DOI: 10.1016/j.enpol.2013.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151301149X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rema Hanna & Esther Duflo & Michael Greenstone, 2016. "Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 80-114, February.
    2. Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
    3. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    4. Grant Miller & A. Mushfiq Mobarak, 2013. "Gender Differences in Preferences, Intra-Household Externalities, and Low Demand for Improved Cookstoves," NBER Working Papers 18964, National Bureau of Economic Research, Inc.
    5. Tuan, Nguyen Anh & Lefevre, Thierry, 1996. "Analysis of household energy demand in Vietnam," Energy Policy, Elsevier, vol. 24(12), pages 1089-1099, December.
    6. Dewees, Peter A., 1989. "The woodfuel crisis reconsidered: Observations on the dynamics of abundance and scarcity," World Development, Elsevier, vol. 17(8), pages 1159-1172, August.
    7. Arnold, J.E. Michael & Kohlin, Gunnar & Persson, Reidar, 2006. "Woodfuels, livelihoods, and policy interventions: Changing Perspectives," World Development, Elsevier, vol. 34(3), pages 596-611, March.
    8. Troncoso, Karin & Castillo, Alicia & Merino, Leticia & Lazos, Elena & Masera, Omar R., 2011. "Understanding an improved cookstove program in rural Mexico: An analysis from the implementers' perspective," Energy Policy, Elsevier, vol. 39(12), pages 7600-7608.
    9. Grieshop, Andrew P. & Marshall, Julian D. & Kandlikar, Milind, 2011. "Health and climate benefits of cookstove replacement options," Energy Policy, Elsevier, vol. 39(12), pages 7530-7542.
    10. Foell, Wesley & Pachauri, Shonali & Spreng, Daniel & Zerriffi, Hisham, 2011. "Household cooking fuels and technologies in developing economies," Energy Policy, Elsevier, vol. 39(12), pages 7487-7496.
    11. Heltberg, Rasmus, 2005. "Factors determining household fuel choice in Guatemala," Environment and Development Economics, Cambridge University Press, vol. 10(3), pages 337-361, June.
    12. Kaul, Sanjay & Liu, Qian, 1992. "Rural household energy use in China," Energy, Elsevier, vol. 17(4), pages 405-411.
    13. N. Panwar, 2009. "Design and performance evaluation of energy efficient biomass gasifier based cookstove on multi fuels," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(7), pages 627-633, October.
    14. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    15. Bailis, Rob & Cowan, Amanda & Berrueta, Victor & Masera, Omar, 2009. "Arresting the Killer in the Kitchen: The Promises and Pitfalls of Commercializing Improved Cookstoves," World Development, Elsevier, vol. 37(10), pages 1694-1705, October.
    16. L. J. Bourgeois, III & Kathleen M. Eisenhardt, 1988. "Strategic Decision Processes in High Velocity Environments: Four Cases in the Microcomputer Industry," Management Science, INFORMS, vol. 34(7), pages 816-835, July.
    17. N. Panwar & A. Kurchania & N. Rathore, 2009. "Mitigation of greenhouse gases by adoption of improved biomass cookstoves," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(6), pages 569-578, August.
    18. Shrimali, Gireesh & Slaski, Xander & Thurber, Mark C. & Zerriffi, Hisham, 2011. "Improved stoves in India: A study of sustainable business models," Energy Policy, Elsevier, vol. 39(12), pages 7543-7556.
    19. Smith, Kirk R. & Shuhua, Gu & Kun, Huang & Daxiong, Qiu, 1993. "One hundred million improved cookstoves in China: How was it done?," World Development, Elsevier, vol. 21(6), pages 941-961, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    2. Muhammad Irfan & Michael P Cameron & Gazi Hassan, 2021. "Interventions to mitigate indoor air pollution: A cost-benefit analysis," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    3. Martínez-Gómez, J. & Ibarra, D. & Villacis, S. & Cuji, P. & Cruz, P.R., 2016. "Analysis of LPG, electric and induction cookers during cooking typical Ecuadorian dishes into the national efficient cooking program," Food Policy, Elsevier, vol. 59(C), pages 88-102.
    4. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    5. Pascale, Andrew & Urmee, Tania & Whale, Jonathan & Kumar, S., 2016. "Examining the potential for developing women-led solar PV enterprises in rural Myanmar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 576-583.
    6. Wouter C. Kersten & Nguyen H. Long & Jan Carel Diehl & Marcel R. M. Crul & Jo M. L. Van Engelen, 2017. "Comparing Performance of Biomass Gasifier Stoves: Influence of a Multi-Context Approach," Sustainability, MDPI, vol. 9(7), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    2. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    3. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.
    4. Vanschoenwinkel, Janka & Lizin, Sebastien & Swinnen, Gilbert & Azadi, Hossein & Van Passel, Steven, 2014. "Solar cooking in Senegalese villages: An application of best–worst scaling," Energy Policy, Elsevier, vol. 67(C), pages 447-458.
    5. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    6. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    7. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    8. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    9. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    10. Brooks, N. & Bhojvaid, V. & Jeuland, M.A. & Lewis, J.J. & Patange, O. & Pattanayak, S.K., 2016. "How much do alternative cookstoves reduce biomass fuel use? Evidence from North India," Resource and Energy Economics, Elsevier, vol. 43(C), pages 153-171.
    11. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2014. "A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 580-603.
    12. D'Agostino, Anthony L. & Urpelainen, Johannes & Xu, Alice, 2015. "Socio-economic determinants of charcoal expenditures in Tanzania: Evidence from panel data," Energy Economics, Elsevier, vol. 49(C), pages 472-481.
    13. Bonan, Jacopo & Battiston, Pietro & Bleck, Jaimie & LeMay-Boucher, Philippe & Pareglio, Stefano & Sarr, Bassirou & Tavoni, Massimo, 2021. "Social interaction and technology adoption: Experimental evidence from improved cookstoves in Mali," World Development, Elsevier, vol. 144(C).
    14. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    15. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    16. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    17. Jack Gregory & David I. Stern, 2012. "Fuel Choices in Rural Maharashtra," CCEP Working Papers 1207, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    18. Rui Xing & Tatsuya Hanaoka & Yuko Kanamori & Toshihiko Masui, 2017. "Greenhouse Gas and Air Pollutant Emissions of China’s Residential Sector: The Importance of Considering Energy Transition," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    19. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    20. Vahlne, Niklas, 2017. "On LPG usage in rural Vietnamese households," Development Engineering, Elsevier, vol. 2(C), pages 1-11.

    More about this item

    Keywords

    ICS; Households; Modeling;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:484-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.