IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p984-d100744.html
   My bibliography  Save this article

Sustainability Multivariate Analysis of the Energy Consumption of Ecuador Using MuSIASEM and BIPLOT Approach

Author

Listed:
  • Nathalia Tejedor-Flores

    (Department of Statistics, University of Salamanca, 37008 Salamanca, Spain)

  • Purificación Vicente-Galindo

    (Department of Statistics, University of Salamanca, 37008 Salamanca, Spain
    Instituto de Investigación Biomédica (IBSAL), 08028 Salamanca, Spain)

  • Purificación Galindo-Villardón

    (Department of Statistics, University of Salamanca, 37008 Salamanca, Spain
    Instituto de Investigación Biomédica (IBSAL), 08028 Salamanca, Spain
    Escuela Superior Politécnica del Litoral (ESPOL), Facultad de Ciencias de la Vida, 09-01-5863 Guayaquil, Ecuador)

Abstract

Rapid economic growth, expanding populations and increasing prosperity are driving up demand for energy, water and food, especially in developing countries. To understand the energy consumption of a country, we used the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach. The MuSIASEM is an innovative approach to accounting that integrates quantitative information generated by distinct types of conventional models based on different dimensions and scales of analysis. The main objective of this work is to enrich the MuSIASEM approach with information from multivariate methods in order to improve the efficiency of existing models of sustainability. The Biplot method permits the joint plotting, in a reduced dimension of the rows (individuals) and columns (variables) of a multivariate data matrix. We found, in the case study of Ecuador, that the highest values of the Exosomatic Metabolic Rate (EMR) per economic sector and Economic Labor Productivity (ELP) are located in the Productive Sector (PS). We conclude that the combination of the MuSIASEM variables with the HJ-Biplot allows us to easily know the detailed behavior of the labor productivity and energy consumption of a country.

Suggested Citation

  • Nathalia Tejedor-Flores & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2017. "Sustainability Multivariate Analysis of the Energy Consumption of Ecuador Using MuSIASEM and BIPLOT Approach," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:984-:d:100744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sorman, Alevgul H. & Giampietro, Mario, 2011. "Generating better energy indicators: Addressing the existence of multiple scales and multiple dimensions," Ecological Modelling, Elsevier, vol. 223(1), pages 41-53.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 1," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1074-1081, June.
    4. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    5. Mario Giampietro & Kozo Mayumi & Jesus Ramos-Martín, 2008. "Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MUSIASEM): An Outline of Rationale and Theory," Working Papers wpdea0801, Department of Applied Economics at Universitat Autonoma of Barcelona.
    6. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    7. Giampietro, Mario & Mayumi, Kozo, 1997. "A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability," Structural Change and Economic Dynamics, Elsevier, vol. 8(4), pages 453-469, October.
    8. Ramos-Martin, Jesus & Giampietro, Mario & Mayumi, Kozo, 2007. "On China's exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM)," Ecological Economics, Elsevier, vol. 63(1), pages 174-191, June.
    9. Nicholas Georgescu-Roegen, 1986. "The Entropy Law and the Economic Process in Retrospect," Eastern Economic Journal, Eastern Economic Association, vol. 12(1), pages 3-25, Jan-Mar.
    10. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 956-970, June.
    11. Velasco-Fernández, Raúl & Ramos-Martín, Jesus & Giampietro, Mario, 2015. "The energy metabolism of China and India between 1971 and 2010: Studying the bifurcation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1052-1066.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    2. Carmen C. Rodríguez-Martínez & Mitzi Cubilla-Montilla & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2023. "X-STATIS: A Multivariate Approach to Characterize the Evolution of E-Participation, from a Global Perspective," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    3. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    4. Carmen C. Rodríguez-Martínez & Isabel María García-Sánchez & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2019. "Exploring Relationships between Environmental Performance, E-Government and Corruption: A Multivariate Perspective," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    5. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Edith Medina-Hernández & María José Fernández-Gómez & Inmaculada Barrera-Mellado, 2021. "Gender Inequality in Latin America: A Multidimensional Analysis Based on ECLAC Indicators," Sustainability, MDPI, vol. 13(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    2. Nancy Arizpe & Jesus Ramos-Martin & Mario Giampietro, 2012. "An analysis of the metabolic patterns of two rural communities affected by soy expansion in the North of Argentina," UHE Working papers 2012_06, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    3. Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
    4. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    5. Ginard-Bosch, Francisco Javier & Ramos-Martín, Jesús, 2016. "Energy metabolism of the Balearic Islands (1986–2012)," Ecological Economics, Elsevier, vol. 124(C), pages 25-35.
    6. Borzoni, Matteo, 2011. "Multi-scale integrated assessment of soybean biodiesel in Brazil," Ecological Economics, Elsevier, vol. 70(11), pages 2028-2038, September.
    7. Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.
    8. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
    9. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    10. Raúl Velasco Fernández & Jesus Ramos-Martin & Mario Giampietro, 2013. "The energy metabolism of China and India between 1971-2010: studying the bifurcation," UHE Working papers 2013_02, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    11. Velasco-Fernández, Raúl & Ramos-Martín, Jesus & Giampietro, Mario, 2015. "The energy metabolism of China and India between 1971 and 2010: Studying the bifurcation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1052-1066.
    12. Fix, Blair, 2019. "Human Activity, Energy & Money in the United States: Connecting the Biophysical Economy with its Pecuniary Image," Thesis Commons e74ng, Center for Open Science.
    13. Talens Peiró, L. & Villalba Méndez, G. & Sciubba, E. & Gabarrell i Durany, X., 2010. "Extended exergy accounting applied to biodiesel production," Energy, Elsevier, vol. 35(7), pages 2861-2869.
    14. Fix, Blair, 2013. "Human Activity, Energy & Money in the Unlted States: Connecting the Biophysical Economy with its Pecuniary Image," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 203120, September.
    15. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
    16. Raul F. C. Miranda & Carolina Grottera & Mario Giampietro, 2016. "Understanding slums: analysis of the metabolic pattern of the Vidigal favela in Rio de Janeiro, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1297-1322, October.
    17. Andreoni, Valeria, 2017. "Energy Metabolism of 28 World Countries: A Multi-scale Integrated Analysis," Ecological Economics, Elsevier, vol. 142(C), pages 56-69.
    18. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    19. F. Ravera & A. Scheidel & J. dell’Angelo & G. Gamboa & T. Serrano & S. Mingorría & V. Cabello & N. Arizpe & P. Ariza, 2014. "Pathways of rural change: an integrated assessment of metabolic patterns in emerging ruralities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 811-820, August.
    20. Mayumi, Kozo & Tanikawa, Hiroki, 2012. "Going beyond energy accounting for sustainability: Energy, fund elements and the economic process," Energy, Elsevier, vol. 37(1), pages 18-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:984-:d:100744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.