Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- W. Carter Johnson & Brett Werner & Glenn Guntenspergen, 2016. "Non-linear responses of glaciated prairie wetlands to climate warming," Climatic Change, Springer, vol. 134(1), pages 209-223, January.
- W. Carter Johnson & Brett Werner & Glenn R. Guntenspergen, 2016. "Non-linear responses of glaciated prairie wetlands to climate warming," Climatic Change, Springer, vol. 134(1), pages 209-223, January.
- Mikhail Mastepanov & Charlotte Sigsgaard & Edward J. Dlugokencky & Sander Houweling & Lena Ström & Mikkel P. Tamstorf & Torben R. Christensen, 2008. "Large tundra methane burst during onset of freezing," Nature, Nature, vol. 456(7222), pages 628-630, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaoming Kang & Liang Yan & Lijuan Cui & Xiaodong Zhang & Yanbin Hao & Haidong Wu & Yuan Zhang & Wei Li & Kerou Zhang & Zhongqing Yan & Yong Li & Jinzhi Wang, 2018. "Reduced Carbon Dioxide Sink and Methane Source under Extreme Drought Condition in an Alpine Peatland," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
- Taryono Darusman & Daniel Murdiyarso & Impron & Iswandi Anas, 2023. "Effect of rewetting degraded peatlands on carbon fluxes: a meta-analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-20, March.
- Rong Leng & Quanzhi Yuan & Yushuang Wang & Qian Kuang & Ping Ren, 2020. "Carbon Balance of Grasslands on the Qinghai-Tibet Plateau under Future Climate Change: A Review," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guangshuai Wang & Yueping Liang & Fei Ren & Xiaoxia Yang & Zhaorong Mi & Yang Gao & Timothy S. George & Zhenhua Zhang, 2018. "Greenhouse Gas Emissions from the Tibetan Alpine Grassland: Effects of Nitrogen and Phosphorus Addition," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
- K. M. Walter Anthony & P. Anthony & N. Hasson & C. Edgar & O. Sivan & E. Eliani-Russak & O. Bergman & B. J. Minsley & S. R. James & N. J. Pastick & A. Kholodov & S. Zimov & E. Euskirchen & M. S. Bret-, 2024. "Upland Yedoma taliks are an unpredicted source of atmospheric methane," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
- Wei Shan & Lisha Qiu & Ying Guo & Chengcheng Zhang & Zhichao Xu & Shuai Liu, 2022. "Spatiotemporal Distribution Characteristics of Fire Scars Further Prove the Correlation between Permafrost Swamp Wildfires and Methane Geological Emissions," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
- Xiaoming Kang & Liang Yan & Lijuan Cui & Xiaodong Zhang & Yanbin Hao & Haidong Wu & Yuan Zhang & Wei Li & Kerou Zhang & Zhongqing Yan & Yong Li & Jinzhi Wang, 2018. "Reduced Carbon Dioxide Sink and Methane Source under Extreme Drought Condition in an Alpine Peatland," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
- Hao Zhang & Jie Tang & Shuang Liang & Zhaoyang Li & Ping Yang & Jingjing Wang & Sining Wang, 2017. "The Emissions of Carbon Dioxide, Methane, and Nitrous Oxide during Winter without Cultivation in Local Saline-Alkali Rice and Maize Fields in Northeast China," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
- Mauro Guglielmin & Nicoletta Cannone, 2012. "A permafrost warming in a cooling Antarctica?," Climatic Change, Springer, vol. 111(2), pages 177-195, March.
More about this item
Keywords
carbon budget; greenhouse gas emission; peatland; rewetting; water level;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:948-:d:100491. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.