IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p1017-d101309.html
   My bibliography  Save this article

Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010

Author

Listed:
  • Gang Sun Kim

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea
    These authors contributed equally to this work.)

  • Chul-Hee Lim

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea
    These authors contributed equally to this work.)

  • Sea Jin Kim

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea)

  • Jongyeol Lee

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea)

  • Yowhan Son

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea)

  • Woo-Kyun Lee

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea)

Abstract

Afforestation of forests in South Korea may provide an example of the benefit of afforestation on precipitation storage and erosion control. In this study, we presented the effects of afforestation on water supply and soil loss prevention. A spatio-temporal simulation of forest water yield and soil loss was performed from 1971–2010 using InVEST water yield and SWAT models. A forest stock change map was produced by combining land cover data and National Forest Inventory data. The forest water yield increased about twice with changes in forest stock and climate from 1971–2010 and showed a spatially homogeneous water supply capacity. In the same period, the soil loss decreased more than three times, and the volatility of soil loss, in the 2010s, was smaller than before. The analysis of the change in forest stock without considering climate change showed an increase of 43% in forest water yield and a decrease of 87% in soil loss. An increase in precipitation increased the water yield, but also increased the soil loss volume. A change in forest stock led to positive changes in both. This study presents functional positive effects of the afforestation program in South Korea that can be useful in various afforestation programs in other countries.

Suggested Citation

  • Gang Sun Kim & Chul-Hee Lim & Sea Jin Kim & Jongyeol Lee & Yowhan Son & Woo-Kyun Lee, 2017. "Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1017-:d:101309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/1017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/1017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoyi Zhou & Xiaohua Wei & Xiuzhi Chen & Ping Zhou & Xiaodong Liu & Yin Xiao & Ge Sun & David F. Scott & Shuyidan Zhou & Liusheng Han & Yongxian Su, 2015. "Global pattern for the effect of climate and land cover on water yield," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    2. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    3. Song, Cholho & Lee, Woo-Kyun & Choi, Hyun-Ah & Kim, Jaeuk & Jeon, Seong Woo & Kim, Joon Soon, 2016. "Spatial assessment of ecosystem functions and services for air purification of forests in South Korea," Environmental Science & Policy, Elsevier, vol. 63(C), pages 27-34.
    4. Bagstad, Kenneth J. & Semmens, Darius J. & Winthrop, Robert, 2013. "Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona," Ecosystem Services, Elsevier, vol. 5(C), pages 40-50.
    5. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jongyeol & Lim, Chul-Hee & Kim, Gang Sun & Markandya, Anil & Chowdhury, Sarwat & Kim, Sea Jin & Lee, Woo-Kyun & Son, Yowhan, 2018. "Economic viability of the national-scale forestation program: The case of success in the Republic of Korea," Ecosystem Services, Elsevier, vol. 29(PA), pages 40-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ochoa, Vivian & Urbina-Cardona, Nicolás, 2017. "Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges," Ecosystem Services, Elsevier, vol. 26(PA), pages 155-169.
    2. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    3. Shiliang Liu & Yuhong Dong & Hua Liu & Fangfang Wang & Lu Yu, 2023. "Review of Valuation of Forest Ecosystem Services and Realization Approaches in China," Land, MDPI, vol. 12(5), pages 1-16, May.
    4. Lee, Jongyeol & Kim, Hyungsub & Song, Cholho & Kim, Gang Sun & Lee, Woo-Kyun & Son, Yowhan, 2020. "Determining economically viable forest management option with consideration of ecosystem services in Korea: A strategy after successful national forestation," Ecosystem Services, Elsevier, vol. 41(C).
    5. Das, Manob & Das, Arijit & Saikh, Selim, 2024. "Estimating supply-demand mismatches for optimization of sustainable land use planning in a rapidly growing urban agglomeration (India)," Land Use Policy, Elsevier, vol. 139(C).
    6. Uchida, Emi & Swallow, Stephen K. & Gold, Arthur J. & Opaluch, James & Kafle, Achyut & Merrill, Nathaniel H. & Michaud, Clayton & Gill, Carrie Anne, 2018. "Integrating Watershed Hydrology and Economics to Establish a Local Market for Water Quality Improvement: A Field Experiment," Ecological Economics, Elsevier, vol. 146(C), pages 17-25.
    7. Anna Lüke & Jochen Hack, 2018. "Comparing the Applicability of Commonly Used Hydrological Ecosystem Services Models for Integrated Decision-Support," Sustainability, MDPI, vol. 10(2), pages 1-22, January.
    8. Lopes, Rita & Videira, Nuno, 2019. "How to articulate the multiple value dimensions of ecosystem services? Insights from implementing the PArticulatES framework in a coastal social-ecological system in Portugal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    9. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    10. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    11. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    12. Breffle, William S. & Muralidharan, Daya & Donovan, Richard P. & Liu, Fangming & Mukherjee, Amlan & Jin, Yongliang, 2013. "Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the Great Lakes environment: A Lake Michigan case study," Resources Policy, Elsevier, vol. 38(2), pages 152-161.
    13. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    14. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    15. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    16. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    17. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    18. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    19. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    20. Juliana Hurtado Rassi, 2020. "Gestión conjunta de ecosistemas transfronterizos: la importancia del trabajo articulado entre los Estados para la conservación de los recursos naturales. Análisis del caso particular de la “Reserva de," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1241, htpr_v3_i.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1017-:d:101309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.