IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1102-d1152091.html
   My bibliography  Save this article

Review of Valuation of Forest Ecosystem Services and Realization Approaches in China

Author

Listed:
  • Shiliang Liu

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Yuhong Dong

    (Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)

  • Hua Liu

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Fangfang Wang

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Lu Yu

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract

Forests are essential for the provision of water, financial resources, food, and carbon, and offer immense ecosystem service values. The accurate, quantitative, and objective evaluation of forest ecosystem service (FES) values can help uncover methods for realizing ecological product value, which in turn supports forest conservation and ecological benefit enhancement. In China, FES valuation methods are diverse and tailored to specific objectives, encompassing matter quantity assessment, value quantity assessment, energy value analysis, and landscape ecological modeling methods. The “Forest Ecosystem Service Function Assessment Specification” guideline plays a crucial role in fostering standardized valuation. Carbon-related ecosystem services have been increasingly studied in China; however, valuation challenges remain, including data accuracy, the double counting of ecosystem services, methodological limitations, and the incomplete assessment of non-use values. Regarding value realization, the development of payment for ecosystem services (PES), ecological product benefit trading (EPBT), ecological premiums, and ecological industries has seen gradual progresses in recent years. However, realization approaches still depend on government support, and the establishment of market-oriented strategies requires further reinforcement. Enhancing FES valuation necessitates the integration of interdisciplinary and multi-method approaches, as well as the creation of an accounting and assessment mechanism. Realization approaches must not only be continuously expanded but also consistently innovated over time. It is essential to consider the impact of market development on FES valuation; establish robust realization approaches; reinforce promotional and guarantee mechanisms; and increase the efficacy of policy management.

Suggested Citation

  • Shiliang Liu & Yuhong Dong & Hua Liu & Fangfang Wang & Lu Yu, 2023. "Review of Valuation of Forest Ecosystem Services and Realization Approaches in China," Land, MDPI, vol. 12(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1102-:d:1152091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Muradian, Roldan & Corbera, Esteve & Pascual, Unai & Kosoy, Nicolás & May, Peter H., 2010. "Reconciling theory and practice: An alternative conceptual framework for understanding payments for environmental services," Ecological Economics, Elsevier, vol. 69(6), pages 1202-1208, April.
    3. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    4. Daowei Zhang & Anne Stenger, 2015. "Value and valuation of forest ecosystem services," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(2), pages 129-140, July.
    5. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    6. Bagstad, Kenneth J. & Semmens, Darius J. & Winthrop, Robert, 2013. "Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona," Ecosystem Services, Elsevier, vol. 5(C), pages 40-50.
    7. Boumans, Roelof & Roman, Joe & Altman, Irit & Kaufman, Les, 2015. "The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems," Ecosystem Services, Elsevier, vol. 12(C), pages 30-41.
    8. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    9. Siriwardena, Shyamani D. & Boyle, Kevin J. & Holmes, Thomas P. & Wiseman, P. Eric, 2016. "The implicit value of tree cover in the U.S.: A meta-analysis of hedonic property value studies," Ecological Economics, Elsevier, vol. 128(C), pages 68-76.
    10. Ana Carolina V. Nadalini & Ricardo de Araujo Kalid & Ednildo Andrade Torres, 2021. "Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    11. Watanabe, Marcos D.B. & Ortega, Enrique, 2014. "Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change," Ecological Modelling, Elsevier, vol. 271(C), pages 113-131.
    12. Malte Faber & Ralph Winkler, 2006. "Heterogeneity and Time," American Journal of Economics and Sociology, Wiley Blackwell, vol. 65(3), pages 803-825, July.
    13. Lu, Hongfang & Campbell, Elliott T. & Campbell, Daniel E. & Wang, Changwei & Ren, Hai, 2017. "Dynamics of ecosystem services provided by subtropical forests in Southeast China during succession as measured by donor and receiver value," Ecosystem Services, Elsevier, vol. 23(C), pages 248-258.
    14. Bagstad, Kenneth J. & Johnson, Gary W. & Voigt, Brian & Villa, Ferdinando, 2013. "Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services," Ecosystem Services, Elsevier, vol. 4(C), pages 117-125.
    15. Chan, Kai M.A. & Satterfield, Terre & Goldstein, Joshua, 2012. "Rethinking ecosystem services to better address and navigate cultural values," Ecological Economics, Elsevier, vol. 74(C), pages 8-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua Zhou & Jiachen Fan & Xue Yang & Kaifeng Duan, 2023. "Food Export Stability, Political Ties, and Land Resources," Land, MDPI, vol. 12(10), pages 1-20, September.
    2. Hui Li & Qingchun Guan & Yanguo Fan & Chengyang Guan, 2024. "Ecosystem Service Value Assessment of the Yellow River Delta Based on Satellite Remote Sensing Data," Land, MDPI, vol. 13(3), pages 1-20, February.
    3. Changsu Song & Yuqing Liu & Longqing Liu & Chaofan Xian & Xuan Wang, 2023. "A Scientometric Analysis of Payments for Ecosystem Services Research: Mapping Global Trends and Directions," Sustainability, MDPI, vol. 15(21), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    2. Ochoa, Vivian & Urbina-Cardona, Nicolás, 2017. "Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges," Ecosystem Services, Elsevier, vol. 26(PA), pages 155-169.
    3. Lopes, Rita & Videira, Nuno, 2019. "How to articulate the multiple value dimensions of ecosystem services? Insights from implementing the PArticulatES framework in a coastal social-ecological system in Portugal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    4. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    5. Beichen Ge & Congjin Wang & Yuhong Song, 2023. "Ecosystem Services Research in Rural Areas: A Systematic Review Based on Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    7. You Zuo & Lin Zhang, 2023. "Research on Local Ecosystem Cultural Services in the Jiangnan Water Network Rural Areas: A Case Study of the Ecological Green Integration Demonstration Zone in the Yangtze River Delta, China," Land, MDPI, vol. 12(7), pages 1-21, July.
    8. Verburg, René & Selnes, Trond & Verweij, Pita, 2016. "Governing ecosystem services: National and local lessons from policy appraisal and implementation," Ecosystem Services, Elsevier, vol. 18(C), pages 186-197.
    9. Wubante Fetene Admasu & Annelies Boerema & Jan Nyssen & Amare Sewnet Minale & Enyew Adgo Tsegaye & Steven Van Passel, 2020. "Uncovering Ecosystem Services of Expropriated Land: The Case of Urban Expansion in Bahir Dar, Northwest Ethiopia," Land, MDPI, vol. 9(10), pages 1-20, October.
    10. Maia de Souza, Danielle & Lopes, Gabriela Russo & Hansson, Julia & Hansen, Karin, 2018. "Ecosystem services in life cycle assessment: A synthesis of knowledge and recommendations for biofuels," Ecosystem Services, Elsevier, vol. 30(PB), pages 200-210.
    11. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    12. Ferdinando Villa & Kenneth J Bagstad & Brian Voigt & Gary W Johnson & Rosimeiry Portela & Miroslav Honzák & David Batker, 2014. "A Methodology for Adaptable and Robust Ecosystem Services Assessment," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-18, March.
    13. Olosutean Horea, 2015. "Methods for Modeling Ecosystem Services: A Review," Management of Sustainable Development, Sciendo, vol. 7(1), pages 5-12, June.
    14. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    15. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    16. Klasen, Stephan & Meyer, Katrin M. & Dislich, Claudia & Euler, Michael & Faust, Heiko & Gatto, Marcel & Hettig, Elisabeth & Melati, Dian N. & Jaya, I. Nengah Surati & Otten, Fenna & Pérez-Cruzado, Cés, 2016. "Economic and ecological trade-offs of agricultural specialization at different spatial scales," Ecological Economics, Elsevier, vol. 122(C), pages 111-120.
    17. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    18. Stephen C. L. Watson & Adrian C. Newton, 2018. "Dependency of Businesses on Flows of Ecosystem Services: A Case Study from the County of Dorset, UK," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    19. Jie Huang & Zimin Sun & Pengshu Zhong, 2022. "The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    20. Moses Fayiah & ShiKui Dong & Sphiwe Wezzie Khomera & Syed Aziz Ur Rehman & Mingyue Yang & Jiannan Xiao, 2020. "Status and Challenges of Qinghai–Tibet Plateau’s Grasslands: An Analysis of Causes, Mitigation Measures, and Way Forward," Sustainability, MDPI, vol. 12(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1102-:d:1152091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.