IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p799-d98226.html
   My bibliography  Save this article

A Grey Water Footprint Assessment of Groundwater Chemical Pollution: Case Study in Salento (Southern Italy)

Author

Listed:
  • Pier Paolo Miglietta

    (Department of Economics and Management, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

  • Pierluigi Toma

    (Department of Economics and Management, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

  • Francesco Paolo Fanizzi

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy
    Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani 27, 70125 Bari, Italy)

  • Antonella De Donno

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

  • Benedetta Coluccia

    (Department of Economics and Management, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

  • Danilo Migoni

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy
    Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani 27, 70125 Bari, Italy)

  • Francesco Bagordo

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

  • Francesca Serio

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov. le Lecce-Monteroni, 73100 Lecce, Italy)

Abstract

The worsening of groundwater quality is a huge problem for some regions, especially where a karst aquifer system is the most important water resource because of the deficiency of a well-developed superficial water supply. In this study the chemical quality of a deep aquifer of the Salento peninsula (Southern Italy), where a shallow aquifer and an extensive deep aquifer are exploited as a source of drinking water and irrigation water, was monitored. The indicator used to assess the sustainability of pollution produce by human activities is the “grey water footprint” (GWF) which measures the amount of water required to assimilate a polluting load produced from anthropic activity. The GWF, calculated for each chemical parameter, shows a widespread contamination by Mercury (Hg), Vanadium (V) and Ammonium (NH 4 + ) with concentrations above the limits (Lgs. D. 31/2001). The high Mercury and Vanadium concentrations may thus be associated with anthropic pressures on the aquifer, while Ammonium derives mainly from fertilizers used in agriculture. The situation that emerged involves reflections on the continuous human pressure on natural resources. Therefore, the management of groundwater quality requires a multidisciplinary approach focused on identifying the measures necessary to protect our water resources.

Suggested Citation

  • Pier Paolo Miglietta & Pierluigi Toma & Francesco Paolo Fanizzi & Antonella De Donno & Benedetta Coluccia & Danilo Migoni & Francesco Bagordo & Francesca Serio, 2017. "A Grey Water Footprint Assessment of Groundwater Chemical Pollution: Case Study in Salento (Southern Italy)," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:799-:d:98226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pier Paolo Miglietta & Domenico Morrone & Federica De Leo, 2018. "The Water Footprint Assessment of Electricity Production: An Overview of the Economic-Water-Energy Nexus in Italy," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    2. Francesca Serio & Lucia Martella & Giovanni Imbriani & Adele Idolo & Francesco Bagordo & Antonella De Donno, 2021. "The Water Safety Plan Approach: Application to Small Drinking-Water Systems—Case Studies in Salento (South Italy)," IJERPH, MDPI, vol. 18(8), pages 1-21, April.
    3. Pier Paolo Miglietta & Domenico Morrone, 2018. "Managing Water Sustainability: Virtual Water Flows and Economic Water Productivity Assessment of the Wine Trade between Italy and the Balkans," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    4. Adam Khalifa Mohamed & Dan Liu & Kai Song & Mohamed A. A. Mohamed & Elsiddig Aldaw & Basheer A. Elubid, 2019. "Hydrochemical Analysis and Fuzzy Logic Method for Evaluation of Groundwater Quality in the North Chengdu Plain, China," IJERPH, MDPI, vol. 16(3), pages 1-21, January.
    5. Naoum Tsolakis & Jagjit Singh Srai & Eirini Aivazidou, 2018. "Blue Water Footprint Management in a UK Poultry Supply Chain under Environmental Regulatory Constraints," Sustainability, MDPI, vol. 10(3), pages 1-13, February.
    6. Kai Zhang & Shunjie Wang & Shuyu Liu & Kunlun Liu & Jiayu Yan & Xuejia Li, 2022. "Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    7. Yanna Yang & Wenlai Xu & Jinyao Chen & Qiang Chen & Zhicheng Pan, 2018. "Hydrochemical Characteristics and Groundwater Quality Assessment in the Diluvial Fan of Gaoqiao, Emei Mountain, China," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
    8. Adele Idolo & Tiziana Grassi & Francesco Bagordo & Alessandra Panico & Mattia De Giorgi & Francesca Serio & Marcello Guido & Prisco Piscitelli & Giovanni De Filippis & Annamaria Raho & Antonella De Do, 2018. "Micronuclei in Exfoliated Buccal Cells of Children Living in a Cluster Area of Salento (Southern Italy) with a High Incidence of Lung Cancer: The IMP.AIR Study," IJERPH, MDPI, vol. 15(8), pages 1-15, August.
    9. Chen Yue & Yong Qian & Feng Liu & Xiangxiang Cui & Suhua Meng, 2023. "Analysis of Ningxia Hui Autonomous District’s Gray Water Footprint from the Perspective of Water Sustainability," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    10. Isabella Gambino & Francesco Bagordo & Benedetta Coluccia & Tiziana Grassi & Giovanni De Filippis & Prisco Piscitelli & Biagio Galante & Federica De Leo, 2020. "PET-Bottled Water Consumption in View of a Circular Economy: The Case Study of Salento (South Italy)," Sustainability, MDPI, vol. 12(19), pages 1-13, September.
    11. Diego Voccia & Giacomo Mortella & Federico Ferrari & Maria Chiara Fontanella & Marco Trevisan & Lucrezia Lamastra, 2022. "The Anthropic Pressure on the Grey Water Footprint: The Case of the Vulnerable Areas of the Emilia-Romagna Region in Italy," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
    12. Gang Liu & Weiqian Wang & Kevin W. Li, 2019. "Water Footprint Allocation under Equity and Efficiency Considerations: A Case Study of the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 16(5), pages 1-24, March.
    13. Giovanni De Filippis & Prisco Piscitelli & Idelberto Francesco Castorini & Anna Maria Raho & Adele Idolo & Nicola Ungaro & Filomena Lacarbonara & Erminia Sgaramella & Vito Laghezza & Donatella Chionna, 2020. "Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project," IJERPH, MDPI, vol. 17(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Long Zhang & Xiaoyu Luan & Xinyi Chen & Shuhao Zhang & Yukun Liang & Zhaojie Cui, 2022. "Water Footprint Inventory Construction of Cathode Copper Products in a Chinese Eco-Industry," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    3. George Tsakiris, 2017. "Facets of Modern Water Resources Management: Prolegomena," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2899-2904, August.
    4. Dimitrios P. Platis & Christos D. Anagnostopoulos & Aggeliki D. Tsaboula & Georgios C. Menexes & Kiriaki L. Kalburtji & Andreas P. Mamolos, 2019. "Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    5. Li, Zhibin & Feng, Bianbian & Wang, Wei & Yang, Xi & Wu, Pute & Zhuo, La, 2022. "Spatial and temporal sensitivity of water footprint assessment in crop production to modelling inputs and parameters," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Zafar Hussain & Zongmin Wang & Jiaxue Wang & Haibo Yang & Muhammad Arfan & Daniyal Hassan & Wusen Wang & Muhammad Imran Azam & Muhammad Faisal, 2022. "A comparative Appraisal of Classical and Holistic Water Scarcity Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 931-950, February.
    8. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    9. Elio Romano & Pasquale De Palo & Flavio Tidona & Aristide Maggiolino & Andrea Bragaglio, 2021. "Dairy Buffalo Life Cycle Assessment (LCA) Affected by a Management Choice: The Production of Wheat Crop," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    10. Cai, Beiming & Jiang, Ling & Liu, Yu & Wang, Feng & Zhang, Wei & Yan, Xu & Ge, Zhenzi, 2023. "Regional trends and socioeconomic drivers of energy-related water use in China from 2007 to 2017," Energy, Elsevier, vol. 275(C).
    11. Orsolya Tompa & Anna Kiss & Matthieu Maillot & Eszter Sarkadi Nagy & Ágoston Temesi & Zoltán Lakner, 2022. "Sustainable Diet Optimization Targeting Dietary Water Footprint Reduction—A Country-Specific Study," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    12. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    13. Emily Grubert, 2023. "Yellow, red, and brown energy: leveraging water footprinting concepts for decarbonizing energy systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7239-7260, July.
    14. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    15. Marcelo Werneck Barbosa & José M. Cansino, 2022. "A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    16. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    17. Maziar Mohammadi & Hamid Darabi & Fahimeh Mirchooli & Alireza Bakhshaee & Ali Torabi Haghighi, 2021. "Flood risk mapping and crop-water loss modeling using water footprint analysis in agricultural watershed, northern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2007-2025, January.
    18. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    19. R. R. Weerasooriya & L. P. K. Liyanage & R. H. K. Rathnappriya & W. B. M. A. C. Bandara & T. A. N. T. Perera & M. H. J. P. Gunarathna & G. Y. Jayasinghe, 2021. "Industrial water conservation by water footprint and sustainable development goals: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12661-12709, September.
    20. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2019. "Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010," Ecological Economics, Elsevier, vol. 156(C), pages 318-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:799-:d:98226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.