IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p629-d96034.html
   My bibliography  Save this article

Carbon Dynamics of Reclaimed Coal Mine Soil under Agricultural Use: A Chronosequence Study in the Dongtan Mining Area, Shandong Province, China

Author

Listed:
  • Jun-Feng Qu

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
    Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China
    These authors contributed equally to this work.)

  • Yu-Le Hou

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
    These authors contributed equally to this work.)

  • Meng-Yu Ge

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Kun Wang

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Shu Liu

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Shao-Liang Zhang

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Gang Li

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Fu Chen

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
    Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China)

Abstract

Soil organic carbon (SOC) plays an essential role in the early stages of pedogenisis and ecological restoration in reclaimed mine soils. Dynamic changes in the SOC content are essential for assessing the quality of reclaimed mine soils and the effect of ecological restoration. To objectively assess the carbon dynamics of reclaimed soils, we selected the surface (0–20 cm) soil of farmland under agricultural use (soybean–wheat rotation) from a reclamation chronosequence (R4: 4 years of reclamation, R7: 7 years of reclamation, R10: 10 years of reclamation and R13: 13 years of reclamation) in the Dongtan Mining Area, Shandong Province, China. The adjacent normal, unaffected farmland was used as a control (CK). The results showed that the SOC content gradually increased with the reclamation age until it reached 7.98 g·kg −1 for R13, which accounted for 76% of that of the CK. However, the total carbon contents of the reclaimed soils did not significantly differ from and even appeared higher than that of the CK. This is mainly because the inorganic carbon contents of the reclaimed soils ranged from 2.98 to 12.61 g·kg −1 , all of which were significantly higher than the 0.87 g·kg −1 obtained for the CK. The microbial biomass carbon (MBC) content and the microbial quotient significantly increased with the reclamation age of the soil, and both parameters were markedly higher for R13 than for the CK. The dissolved organic carbon (DOC) content and its ratio to the SOC were significantly higher for R4–R13 than for the CK and DOC/SOC gradually decreased with the reclamation age. Both the reclamation age and the temperature had positive effects on the soil basal respiration (SBR). The SBR rate constantly increased with the reclamation age and was markedly higher at 25 °C than at 15 °C. The temperature sensitivity ( Q 10 ) of the SBR showed a clearly decreasing trend for the reclamation chronosequence, but its value remained higher for R13 than for the CK (2.37). The metabolic quotient constantly decreased with the reclamation age, which suggests that the survival pressure imposed on soil microbes by the soil environment gradually decreased. These results indicate that it takes a long time for organic carbon to accumulate in reclaimed mine soil and that rational agricultural use contributes to sustained improvement of the quality of reclaimed soil.

Suggested Citation

  • Jun-Feng Qu & Yu-Le Hou & Meng-Yu Ge & Kun Wang & Shu Liu & Shao-Liang Zhang & Gang Li & Fu Chen, 2017. "Carbon Dynamics of Reclaimed Coal Mine Soil under Agricultural Use: A Chronosequence Study in the Dongtan Mining Area, Shandong Province, China," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:629-:d:96034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Ali Abdelrhman & Lili Gao & Shengping Li & Jinjing Lu & Xiaojun Song & Mengni Zhang & Fengjun Zheng & Huijun Wu & Xueping Wu, 2021. "Long-Term Application of Organic Wastes Improves Soil Carbon and Structural Properties in Dryland Affected by Coal Mining Activity," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    2. Aneta Kowalska & Bal Ram Singh & Anna Grobelak, 2022. "Carbon Footprint for Post-Mining Soils: The Dynamic of Net CO 2 Fluxes and SOC Sequestration at Different Soil Remediation Stages under Reforestation," Energies, MDPI, vol. 15(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ecker, Olivier & Hatzenbuehler, Patrick L. & Mahrt, Kristi, 2018. "Transforming agriculture for improving food and nutrition security among Nigerian farm households," NSSP working papers 56, International Food Policy Research Institute (IFPRI).
    2. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    3. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    4. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    5. Pandey, Shanta, 2017. "Persistent nature of child marriage among women even when it is illegal: The case of Nepal," Children and Youth Services Review, Elsevier, vol. 73(C), pages 242-247.
    6. OGUNNOWO, Fatai Abiodun & Prof. F. A. OKWO & JULIUS, Deborah Nwanne, 2023. "Availability and Utilization of Security Facilities in Federal Tertiary Institutions of Enugu State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(5), pages 931-941, May.
    7. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    8. Victor Kasulo & Rochelle Holm & Mavuto Tembo & Wales Singini & Joshua Mchenga, 2020. "Enhancing sustainable sanitation through capacity building and rural sanitation marketing in Malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 201-215, January.
    9. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    10. Alex. B. McBratney & Damien Field & Cristine L.S. Morgan & Jingyi Huang, 2019. "On Soil Capability, Capacity, and Condition," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
    11. Tiantian Zhai, 2021. "Environmental Challenges, Opportunities, and Policy Implications to Materialize China’s Green Belt and Road Initiative," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    12. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    13. -, 2021. "The 2020 census round: challenges of the 2030 Agenda for Sustainable Development, the Sustainable Development Goals and the Montevideo Consensus on Population and Development," Población y Desarrollo 46727, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    14. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    15. Shannon L. Sibbald & Nicole Haggerty, 2019. "Integrating Business and Medical Pedagogy to Accomplish the Sustainable Development Goals," Journal of Education for Sustainable Development, , vol. 13(1), pages 92-101, March.
    16. Rahi Jain & Prashant Narnaware, 2020. "Application of Systems Thinking to Dent Child Malnutrition: A Palghar District, India Case Study," Millennial Asia, , vol. 11(1), pages 79-98, April.
    17. Asiamah, Ebenezer & Oduro-Yeboah, Charlotte & Mboom, Frank Peget & Atter, Amy & Idun-Acquah, Nancy Nelly & Nkansah, Jessica, 2022. "Assessment of the volume of seafood waste generation, utilization and management system from selected seafood processing companies in Ghana: A case study," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(07).
    18. Iyappan, Karunya & Babu, Suresh Chandra, 2018. "Building resilient food systems: An analytical review," IFPRI discussion papers 1758, International Food Policy Research Institute (IFPRI).
    19. Hugo O. Garcés & Claudia Durán & Eduardo Espinosa & Alejandro Jerez & Fredi Palominos & Marcela Hinojosa & Raúl Carrasco, 2022. "Monitoring of Thermal Comfort and Air Quality for Sustainable Energy Management inside Hospitals Based on Online Analytical Processing and the Internet of Things," IJERPH, MDPI, vol. 19(19), pages 1-23, September.
    20. Temidayo Olabode Akenroye & Håvard Mokleiv Nygård & Ama Eyo, 2018. "Towards implementation of sustainable development goals (SDG) in developing nations: A useful funding framework," International Area Studies Review, Center for International Area Studies, Hankuk University of Foreign Studies, vol. 21(1), pages 3-8, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:629-:d:96034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.