IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v182y2022ics0040162522003249.html
   My bibliography  Save this article

The nonlinear effects of environmental innovation on energy sector-based carbon dioxide emissions in OECD countries

Author

Listed:
  • Yıldırım, Durmuş Çağrı
  • Esen, Ömer
  • Yıldırım, Seda

Abstract

This paper empirically investigates the impact of environmental innovation on energy sector-based CO2 emissions using a large dataset for 32 OECD countries covering the period 1997–2018. To detect the nonlinear relationship between variables, this paper adopts a panel smooth transition regression (PSTR) model, which can estimate both the threshold level endogenously and the smoothness of the transition from one regime to another. The findings indicate that environmental innovation has a reducing effect on CO2 emissions from the energy sector up to a certain level of innovation is insignificant (1st regime), then it has a reducing effect (2nd regime), and above this level environmental innovation has an increasing effect on carbon emissions (3rd regime), suggesting the existence of a rebound effect. These findings point out that environmental innovations alone are not a solution to struggle environmental problems and should be supported by environmental policies to reveal their environmental reflections. This paper not only makes an important contribution to the empirical literature, but also reveals important policy implications, particularly to achieve climate change targets.

Suggested Citation

  • Yıldırım, Durmuş Çağrı & Esen, Ömer & Yıldırım, Seda, 2022. "The nonlinear effects of environmental innovation on energy sector-based carbon dioxide emissions in OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:tefoso:v:182:y:2022:i:c:s0040162522003249
    DOI: 10.1016/j.techfore.2022.121800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522003249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.
    2. Schleich, Joachim & Mills, Bradford & Dütschke, Elisabeth, 2014. "A brighter future? Quantifying the rebound effect in energy efficient lighting," Energy Policy, Elsevier, vol. 72(C), pages 35-42.
    3. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    4. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    5. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    6. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    7. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    8. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    9. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    10. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    11. Sanni, Maruf, 2018. "Drivers of eco-innovation in the manufacturing sector of Nigeria," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 303-314.
    12. Aydin, Celil & Esen, Ömer, 2018. "Does the level of energy intensity matter in the effect of energy consumption on the growth of transition economies? Evidence from dynamic panel threshold analysis," Energy Economics, Elsevier, vol. 69(C), pages 185-195.
    13. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    14. Jordaan, Sarah M. & Romo-Rabago, Elizabeth & McLeary, Romaine & Reidy, Luke & Nazari, Jamal & Herremans, Irene M., 2017. "The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1397-1409.
    15. Chang, Hsuan-Yu & Wang, Wei & Yu, Jihai, 2021. "Revisiting the environmental Kuznets curve in China: A spatial dynamic panel data approach," Energy Economics, Elsevier, vol. 104(C).
    16. Doğan, Buhari & Ghosh, Sudeshna & Hoang, Dung Phuong & Chu, Lan Khanh, 2022. "Are economic complexity and eco-innovation mutually exclusive to control energy demand and environmental quality in E7 and G7 countries?," Technology in Society, Elsevier, vol. 68(C).
    17. Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    18. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    19. Zhaohua Wang & Zhongmin Yang & Yixiang Zhang, 2012. "Relationships between energy technology patents and CO2 emissions in China: An empirical study," CEEP-BIT Working Papers 34, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    20. Chao, Angela C. & Hong, Lucheng, 2019. "Corporate Social Responsibility Strategy, Environment and Energy Policy," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 311-317.
    21. Font Vivanco, David & Kemp, René & van der Voet, Ester, 2016. "How to deal with the rebound effect? A policy-oriented approach," Energy Policy, Elsevier, vol. 94(C), pages 114-125.
    22. Paramati, Sudharshan Reddy & Mo, Di & Huang, Ruixian, 2021. "The role of financial deepening and green technology on carbon emissions: Evidence from major OECD economies," Finance Research Letters, Elsevier, vol. 41(C).
    23. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    24. Shahid Ali & Eyup Dogan & Fuzhong Chen & Zeeshan Khan, 2021. "International trade and environmental performance in top ten‐emitters countries: The role of eco‐innovation and renewable energy consumption," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 378-387, March.
    25. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    26. Khan, Zeeshan & Hussain, Muzzammil & Shahbaz, Muhammad & Yang, Siqun & Jiao, Zhilun, 2020. "Natural resource abundance, technological innovation, and human capital nexus with financial development: A case study of China," Resources Policy, Elsevier, vol. 65(C).
    27. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    28. Celil Aydin & Ömer Esen, 2019. "Does too much government spending depress the economic development of transition economies? Evidences from dynamic panel threshold analysis," Applied Economics, Taylor & Francis Journals, vol. 51(15), pages 1666-1678, March.
    29. Durmuş Çağrı Yıldırım & Seda Yıldırım & Seyfettin Erdoğan & Işıl Demirtaş & Gualter Couto & Rui Alexandre Castanho, 2021. "Time-Varying Convergences of Environmental Footprint Levels between European Countries," Energies, MDPI, vol. 14(7), pages 1-15, March.
    30. Yıldırım, Seda & Gedikli, Ayfer & Erdoğan, Seyfettin & Yıldırım, Durmuş Çağrı, 2020. "Natural resources rents-financial development nexus: Evidence from sixteen developing countries," Resources Policy, Elsevier, vol. 68(C).
    31. Sharma, Rajesh & Shahbaz, Muhammad & Kautish, Pradeep & Vo, Xuan Vinh, 2021. "Analyzing the impact of export diversification and technological innovation on renewable energy consumption: Evidences from BRICS nations," Renewable Energy, Elsevier, vol. 178(C), pages 1034-1045.
    32. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    33. Michael Grubb & David Ulph, 2002. "Energy, the Environment, and Innovation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 18(1), pages 92-106, Spring.
    34. Celil Aydin & Ömer Esen, 2018. "Reducing CO2 emissions in the EU member states: Do environmental taxes work?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(13), pages 2396-2420, November.
    35. Horbach, Jens, 2008. "Determinants of environmental innovation--New evidence from German panel data sources," Research Policy, Elsevier, vol. 37(1), pages 163-173, February.
    36. Kumar, Surender & Managi, Shunsuke, 2009. "Energy price-induced and exogenous technological change: Assessing the economic and environmental outcomes," Resource and Energy Economics, Elsevier, vol. 31(4), pages 334-353, November.
    37. Kesidou, Effie & Demirel, Pelin, 2012. "On the drivers of eco-innovations: Empirical evidence from the UK," Research Policy, Elsevier, vol. 41(5), pages 862-870.
    38. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alola, Andrew Adewale & Rahko, Jaana, 2024. "The effects of environmental innovations and international technology spillovers on industrial and energy sector emissions – Evidence from small open economies," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    2. Esen, Ömer & Yıldırım, Durmuş Çağrı & Yıldırım, Seda, 2024. "A quantile regression approach to assess the impact of water-related environmental innovations on water stress," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    3. Haider Mahmood & Maham Furqan & Najia Saqib & Anass Hamadelneel Adow & Muzaffar Abbas, 2023. "Innovations and the CO 2 Emissions Nexus in the MENA Region: A Spatial Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Chi-ang Lin & Siqi Zheng & Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    2. Leitão, João & Ferreira, Joaquim & Santibanez-González, Ernesto, 2022. "New insights into decoupling economic growth, technological progress and carbon dioxide emissions: Evidence from 40 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    3. Dewick, Paul & Maytorena-Sanchez, Eunice & Winch, Graham, 2019. "Regulation and regenerative eco-innovation: the case of extracted materials in the UK," Ecological Economics, Elsevier, vol. 160(C), pages 38-51.
    4. Chris Belmert Milindi & Roula Inglesi-Lotz, 2023. "Impact of technological progress on carbon emissions in different country income groups," Energy & Environment, , vol. 34(5), pages 1348-1382, August.
    5. Saia, Artjom, 2023. "Digitalization and CO2 emissions: Dynamics under R&D and technology innovation regimes," Technology in Society, Elsevier, vol. 74(C).
    6. Sanni, Maruf, 2018. "Drivers of eco-innovation in the manufacturing sector of Nigeria," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 303-314.
    7. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    8. Su, Chi-Wei & Pang, Li-Dong & Tao, Ran & Shao, Xuefeng & Umar, Muhammad, 2022. "Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Gasmi, Farid & Kouakou, Dorgyles & Sanni, Maruf, 2022. "The effect of firm informality on sustainable and responsible innovation in developing countries: Evidence from Nigeria," TSE Working Papers 22-1368, Toulouse School of Economics (TSE).
    10. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2022. "Can Environmental Regulation Drive the Environmental Technology Diffusion and Enhance Firms’ Environmental Performance in Developing Countries? Case of Olive Oil Industry in Morocco," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    11. Melek Yurdakul & Halim Kazan, 2024. "A Study on Determining the Eco-Innovation Dynamics in Turkey’s Manufacturing Companies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 4912-4938, March.
    12. Pinget, Amandine, 2016. "Spécificités des déterminants des innovations environnementales : une approche appliquée aux PME [Specificities of determinants for environmental innovation : an approach applied to SMEs]," MPRA Paper 80108, University Library of Munich, Germany.
    13. Gutsche, Gunnar & Ziegler, Andreas, 2019. "Determinants of environmental product and process innovations: New evidence on the basis of European panel data," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203617, Verein für Socialpolitik / German Economic Association.
    14. Fernández, Sara & Torrecillas, Celia & Labra, Romilio Ernesto, 2021. "Drivers of eco-innovation in developing countries: the case of Chilean firms," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Ghisetti, Claudia & Pontoni, Federico, 2015. "Investigating policy and R&D effects on environmental innovation: A meta-analysis," Ecological Economics, Elsevier, vol. 118(C), pages 57-66.
    16. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    17. Albitar, Khaldoon & Al-Shaer, Habiba & Liu, Yang Stephanie, 2023. "Corporate commitment to climate change: The effect of eco-innovation and climate governance," Research Policy, Elsevier, vol. 52(2).
    18. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    19. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    20. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:182:y:2022:i:c:s0040162522003249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.