IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i3p358-d91696.html
   My bibliography  Save this article

Energy Generation from Horse Husbandry Residues by Anaerobic Digestion, Combustion, and an Integrated Approach

Author

Listed:
  • Meike Nitsche

    (Department of Grassland Science and Renewable Plant Resources, Universität Kassel, Steinstrasse 19, 37213 Witzenhausen, Germany)

  • Frank Hensgen

    (Department of Grassland Science and Renewable Plant Resources, Universität Kassel, Steinstrasse 19, 37213 Witzenhausen, Germany)

  • Michael Wachendorf

    (Department of Grassland Science and Renewable Plant Resources, Universität Kassel, Steinstrasse 19, 37213 Witzenhausen, Germany)

Abstract

Horse-related activities often occur close to urban areas, where acreage for horse manure disposal is scarce, and subsequently alternative recovery options are necessary. Anaerobic digestion, direct combustion, and the integrated generation of solid fuel and biogas from biomass (IFBB) process are potential techniques focusing on energy provision. In this study, samples of horse faeces were analysed for chemical composition as pure feedstock and in mixture with straw or wood shavings, as well as for energy yield by biogas production or from combustion of solid fuel. It was observed that chemical properties of faeces, in a mixture with wood shavings, were promising for direct combustion, but achieved low methane yields. The methane yield of pure faeces and the straw mixture was 222.33 ± 13.60 and 233.01 ± 31.32 lN·kg-1 volatile solids (VS)added, respectively. The IFBB process divided the biomass into a press cake with reduced mineral concentration and a press fluid. Methane yields of press fluids were low (108.2 lN·kg-1 VSadded, on average). The chemical composition of the press cake allowed for combustion and led to a higher gross energy potential than anaerobic digestion (two-fold higher for pure manure and the mixture with straw, and five-fold higher for the mixture with shavings). Consequently, the gross energy potential of IFBB is higher compared to anaerobic digestion, however it should be noted that local conditions might favour the implementation of anaerobic digestion.

Suggested Citation

  • Meike Nitsche & Frank Hensgen & Michael Wachendorf, 2017. "Energy Generation from Horse Husbandry Residues by Anaerobic Digestion, Combustion, and an Integrated Approach," Sustainability, MDPI, vol. 9(3), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:358-:d:91696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/3/358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/3/358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    2. Mönch-Tegeder, Matthias & Lemmer, Andreas & Oechsner, Hans, 2014. "Enhancement of methane production with horse manure supplement and pretreatment in a full-scale biogas process," Energy, Elsevier, vol. 73(C), pages 523-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Golimowski & Paweł Krzaczek & Damian Marcinkowski & Weronika Gracz & Grzegorz Wałowski, 2019. "Impact of Biogas and Waste Fats Methyl Esters on NO, NO 2 , CO, and PM Emission by Dual Fuel Diesel Engine," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    2. Frank Hensgen & Michael Wachendorf, 2018. "Aqueous Leaching Prior to Dewatering Improves the Quality of Solid Fuels from Grasslands," Energies, MDPI, vol. 11(4), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    2. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    3. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    4. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    5. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    6. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Fernandez, Helen Coarita & Buffiere, Pierre & Bayard, Rémy, 2022. "Understanding the role of mechanical pretreatment before anaerobic digestion: Lab-scale investigations," Renewable Energy, Elsevier, vol. 187(C), pages 193-203.
    8. Yan Bai & Xingyi Ma & Jing Zhang & Lei Zhang & Jing Bai, 2024. "Energy Efficiency Assessment and Prediction Based on Indicator System, PSO + AHP − FCE Model and Regression Algorithm," Energies, MDPI, vol. 17(8), pages 1-23, April.
    9. Zeb, Iftikhar & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Ndegwa, Pius & Yao, Yiqing & Kafle, Gopi Krishna, 2017. "Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure," Energy, Elsevier, vol. 119(C), pages 1144-1151.
    10. Anna Lymperatou & Niels B. Rasmussen & Hariklia N. Gavala & Ioannis V. Skiadas, 2021. "Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects," Energies, MDPI, vol. 14(3), pages 1-16, February.
    11. Li, Heng & Chen, Zheng & Fu, Dun & Wang, Yuanpeng & Zheng, Yanmei & Li, Qingbiao, 2020. "Improved ADM1 for modelling C, N, P fates in anaerobic digestion process of pig manure and optimization approaches to biogas production," Renewable Energy, Elsevier, vol. 146(C), pages 2330-2336.
    12. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    14. Deng, Liangwei & Yang, Hongnan & Liu, Gangjin & Zheng, Dan & Chen, Ziai & Liu, Yi & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui, 2014. "Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater," Applied Energy, Elsevier, vol. 134(C), pages 349-355.
    15. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    16. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    17. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    18. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    19. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    20. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:358-:d:91696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.