IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v7y2018i2p30-d144343.html
   My bibliography  Save this article

Damage Effects and Fractal Characteristics of Coal Pore Structure during Liquid CO2 Injection into a Coal Bed for E-CBM

Author

Listed:
  • Li Ma

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi’an 710054, China)

  • Gaoming Wei

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi’an 710054, China)

  • Zhenbao Li

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi’an 710054, China)

  • Qiuhong Wang

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi’an 710054, China)

  • Weifeng Wang

    (College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi’an 710054, China)

Abstract

Pore structure has a significant influence on coal-bed methane (CBM) enhancement. Injecting liquid CO 2 into coal seams is an effective way to increase CBM recovery. However, there has been insufficient research regarding the damage effects and fractal characteristics of pore structure at low temperature induced by injecting liquid CO 2 into coal samples. Therefore, the methods of low-pressure nitrogen adsorption-desorption (LP-N 2 -Ad) and mercury intrusion porosimetry (MIP) were used to investigate the damage effects and fractal characteristics of pore structure with full aperture as the specimens were frozen by liquid CO 2 . The adsorption isotherms revealed that the tested coal samples belonged to type B, indicating that they contained many bottle and narrow-slit shaped pores. The average pore diameter (APD; average growth rate of 18.20%), specific surface area (SSA; average growth rate of 7.38%), and total pore volume (TPV; average growth rate of 18.26%) increased after the specimens were infiltrated by liquid CO 2 , which indicated the generation of new pores and the transformation of original pores. Fractal dimensions D 1 (average of 2.58) and D 2 (average of 2.90) of treated coal samples were both larger the raw coal (D 1 , average of 2.55 and D 2 , average of 2.87), which indicated that the treated specimens had more rough pore surfaces and complex internal pore structures than the raw coal samples. The seepage capacity was increased because D 4 (average of 2.91) of the treated specimens was also higher than the raw specimens (D 4 , average of 2.86). The grey relational coefficient between the fractal dimension and pore structure parameters demonstrated that the SSA, APD, and porosity positively influenced the fractal features of the coal samples, whereas the TPV and permeability exerted negative influences.

Suggested Citation

  • Li Ma & Gaoming Wei & Zhenbao Li & Qiuhong Wang & Weifeng Wang, 2018. "Damage Effects and Fractal Characteristics of Coal Pore Structure during Liquid CO2 Injection into a Coal Bed for E-CBM," Resources, MDPI, vol. 7(2), pages 1-17, May.
  • Handle: RePEc:gam:jresou:v:7:y:2018:i:2:p:30-:d:144343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/7/2/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/7/2/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    2. Zhao, Liang & Dong, Hui & Tang, Jiajun & Cai, Jiuju, 2016. "Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 105(C), pages 45-56.
    3. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaoming Wei & Li Ma & Hu Wen & Xin Yi & Jun Deng & Shangming Liu & Zhenbao Li & Duo Zhang, 2023. "Deformation-Failure Characteristics of Coal with Liquid CO 2 Cryogenic-Freezing Process: An Experimental and Digital Study," Energies, MDPI, vol. 16(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    2. Kong, Shengli & Cheng, Yuanping & Ren, Ting & Liu, Hongyong, 2014. "A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief," Applied Energy, Elsevier, vol. 131(C), pages 67-78.
    3. Yang, Xiaohu & Feng, Shangsheng & Zhang, Qunli & Chai, Yue & Jin, Liwen & Lu, Tian Jian, 2017. "The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage," Applied Energy, Elsevier, vol. 194(C), pages 508-521.
    4. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    5. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    6. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    7. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    8. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    9. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    10. Udi Joshua & Festus V. Bekun & Samuel A. Sarkodie, 2020. "New Insight into the Causal Linkage between Economic Expansion, FDI, Coal consumption, Pollutant emissions and Urbanization in South Africa," Working Papers 20/011, European Xtramile Centre of African Studies (EXCAS).
    11. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    12. Huayong Niu & Zhishuo Zhang & Manting Luo, 2022. "Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    13. Manevska-Tasevska, Gordana & Hansson, Helena & Asmild, Mette & Surry, Yves, 2018. "Assessing the regional efficiency of Swedish agriculture under the CAP ‒ a multidirectional efficiency approach," 162nd Seminar, April 26-27, 2018, Budapest, Hungary 271971, European Association of Agricultural Economists.
    14. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    15. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    16. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    17. Hou, Mingyu & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2018. "A thermoacoustic Stirling electrical generator for cold exergy recovery of liquefied nature gas," Applied Energy, Elsevier, vol. 226(C), pages 389-396.
    18. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    19. Huan Zhang, 2016. "Exploring the impact of environmental regulation on economic growth, energy use, and CO2 emissions nexus in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 213-231, October.
    20. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:7:y:2018:i:2:p:30-:d:144343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.