IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2016i1p35-d86368.html
   My bibliography  Save this article

Science Walden: Exploring the Convergence of Environmental Technologies with Design and Art

Author

Listed:
  • Hyun-Kyung Lee

    (Division of General Studies, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Kyung Hwa Cho

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Changsoo Lee

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Jaeweon Cho

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Huiyuhl Yi

    (Division of General Studies, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Yongwon Seo

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Gi-Hyoug Cho

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Young-Nam Kwon

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Changha Lee

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

  • Kyong-Mi Paek

    (Division of General Studies, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea)

Abstract

Science Walden, which is inspired by two prominent literary works, namely, Walden by Henry David Thoreau (1817–1862) and Walden Two by Burrhus Frederic Skinner (1904–1990), is aimed at establishing a community that embodies humanistic values while embracing scientific advancement to produce renewable energy and water sources. This study attempts to capitalize on feces standard money (FSM) and artistic collaboration between scientists and artists as a means of achieving the forms of life depicted in Walden and Walden Two . On our campus, we designed and built a pavilion that serves as a laboratory where scientific advantages, design, and art are merged. In the pavilion, feces are processed in reactors and facilities for sustainable energy production, and rainwater is harvested and treated for use in daily life. Our application of design and art contributes to easing interaction between the general public and scientists because it visualizes an ambiguous theory and concretizes it into an understandable image.

Suggested Citation

  • Hyun-Kyung Lee & Kyung Hwa Cho & Changsoo Lee & Jaeweon Cho & Huiyuhl Yi & Yongwon Seo & Gi-Hyoug Cho & Young-Nam Kwon & Changha Lee & Kyong-Mi Paek, 2016. "Science Walden: Exploring the Convergence of Environmental Technologies with Design and Art," Sustainability, MDPI, vol. 9(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2016:i:1:p:35-:d:86368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Soyoung & Seo, Yongwon, 2015. "Semiclathrate-based CO2 capture from flue gas mixtures: An experimental approach with thermodynamic and Raman spectroscopic analyses," Applied Energy, Elsevier, vol. 154(C), pages 987-994.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    2. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    3. Li, Bing & Sun, Youhong & Jiang, Shuhui & Shen, Yifeng & Qi, Yun & Zhang, Guobiao, 2024. "Investigating CO2–N2 phase behavior for enhanced hydrate-based CO2 sequestration," Energy, Elsevier, vol. 289(C).
    4. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    6. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    7. Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
    8. Kim, Sungwoo & Kim, Soyoung & Mok, Junghoon & Seo, Yongwon, 2024. "Semiclathrate-based CO2 capture from pre-combustion fuel gas using tetra-n-butylammonium chloride: A thermodynamic, kinetic, and spectroscopic study," Energy, Elsevier, vol. 294(C).
    9. Zhang, Yuxuan & Zhai, Xiaoqiang & Zhang, Fengyuan & Zhang, Zhongbin & Hooman, Kamel & Zhang, Hai & Wang, Xiaolin, 2023. "A biomimetic red blood cell inspired encapsulation design for advanced hydrate-based carbon capture," Energy, Elsevier, vol. 271(C).
    10. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Xu, Huazheng & Jiang, Lanlan & Wang, Lei & Song, Yongchen, 2023. "Multiscale analysis of the effect of the structural transformation of TBAB semi-clathrate hydrate on CO2 capture efficiency," Energy, Elsevier, vol. 280(C).
    12. Yang, Mingjun & Zhou, Hang & Wang, Pengfei & Song, Yongchen, 2018. "Effects of additives on continuous hydrate-based flue gas separation," Applied Energy, Elsevier, vol. 221(C), pages 374-385.
    13. Zhang, Yuxuan & Zhang, Zhongbin & Lu, Yuerui & Chalermsinsuwan, Benjapon & Wang, Fei & Zhang, Hailin & Wang, Xiaolin, 2024. "Efficient hydrate-based carbon capture system enabled by red blood cell inspired encapsulation," Applied Energy, Elsevier, vol. 359(C).
    14. Xu, Chun-Gang & Xie, Wen-Jun & Chen, Guo-Shu & Yan, Xiao-Xue & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2016:i:1:p:35-:d:86368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.