IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p593-d72597.html
   My bibliography  Save this article

Optimization Model for Mitigating Global Warming at the Farm Scale: An Application to Japanese Rice Farms

Author

Listed:
  • Kiyotaka Masuda

    (Department of Biological Resources Management, School of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan)

Abstract

In Japan, greenhouse gas emissions from rice production, especially CH 4 emissions in rice paddy fields, are the primary contributors to global warming from agriculture. When prolonged midseason drainage for mitigating CH 4 emissions from rice paddy fields is practiced with environmentally friendly rice production based on reduced use of synthetic pesticides and chemical fertilizers, Japanese rice farmers can receive an agri-environmental direct payment. This paper examines the economic and environmental effects of the agri-environmental direct payment on the adoption of a measure to mitigate global warming in Japanese rice farms using a combined application of linear programming and life cycle assessment at the farm scale. Eco-efficiency, which is defined as net farm income divided by global warming potential, is used as an integrated indicator for assessing the economic and environmental feasibilities. The results show that under the current direct payment level, the prolonged midseason drainage technique does not improve the eco-efficiency of Japanese rice farms because the practice of this technique in environmentally friendly rice production causes large economic disadvantages in exchange for small environmental advantages. The direct payment rates for agri-environmental measures should be determined based on the condition that environmentally friendly agricultural practices improve eco-efficiency compared with conventional agriculture.

Suggested Citation

  • Kiyotaka Masuda, 2016. "Optimization Model for Mitigating Global Warming at the Farm Scale: An Application to Japanese Rice Farms," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:593-:d:72597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Senthilkumar, K. & Lubbers, M.T.M.H. & de Ridder, N. & Bindraban, P.S. & Thiyagarajan, T.M. & Giller, K.E., 2011. "Policies to support economic and environmental goals at farm and regional scales: Outcomes for rice farmers in Southern India depend on their resource endowment," Agricultural Systems, Elsevier, vol. 104(1), pages 82-93, January.
    2. van Calker, K. J. & Berentsen, P. B. M. & de Boer, I. M. J. & Giesen, G. W. J. & Huirne, R. B. M., 2004. "An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm "de Marke"," Agricultural Systems, Elsevier, vol. 82(2), pages 139-160, November.
    3. Seungdo Kim & Bruce E. Dale, 2003. "Cumulative Energy and Global Warming Impact from the Production of Biomass for Biobased Products," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 147-162, July.
    4. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    5. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
    6. Glithero, N.J. & Ramsden, S.J. & Wilson, P., 2012. "Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches," Agricultural Systems, Elsevier, vol. 109(C), pages 53-64.
    7. Latacz-Lohmann, Uwe & Hodge, Ian D., 2003. "European agri-environmental policy for the 21st century," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 1-17.
    8. Berentsen, P. B. M. & Giesen, G. W. J., 1995. "An environmental-economic model at farm level to analyse institutional and technical change in dairy farming," Agricultural Systems, Elsevier, vol. 49(2), pages 153-175.
    9. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiyotaka Masuda, 2019. "Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    2. Maria Julia Xavier Belem & Milton Vieira Junior & Giovanni Mummolo & Francesco Facchini, 2021. "An AHP-Based Procedure for Model Selection for Eco-Efficiency Assessment," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    3. Kiyotaka Masuda, 2023. "Combined Application of a Multi-Objective Genetic Algorithm and Life Cycle Assessment for Evaluating Environmentally Friendly Farming Practices in Japanese Rice Farms," Sustainability, MDPI, vol. 15(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyotaka Masuda, 2019. "Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    2. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    3. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    4. Tilmann Rave, 2013. "Innovationsindikatoren zum globalen Klimaschutz – FuE-Ausgaben und Patente," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    5. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    6. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    7. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    8. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    9. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    10. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    11. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    12. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    13. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    14. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    15. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    16. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    17. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    18. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    19. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    20. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:593-:d:72597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.