IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10059-d1179043.html
   My bibliography  Save this article

Combined Application of a Multi-Objective Genetic Algorithm and Life Cycle Assessment for Evaluating Environmentally Friendly Farming Practices in Japanese Rice Farms

Author

Listed:
  • Kiyotaka Masuda

    (Faculty of Environmental Science, The University of Shiga Prefecture, Hikone 522-8533, Japan)

Abstract

When organic practices may have negative environmental effects, understanding the trade-offs between the economic and environmental outcomes of organic agriculture is essential in its promotion. This paper examines whether organic rice was planted in Japanese rice farms using the combined application of a multi-objective genetic algorithm and life cycle assessment. A modeled farm with 30 hectares (ha) of paddy fields is constructed using information from an agricultural management handbook. The planted crops considered are environmentally friendly rice with reduced use of chemical fertilizers and synthetic pesticides, organic rice, conventional wheat, and conventional soybeans. A bio-economic farm model with both economic and environmental objectives is created. The Pareto-optimal solutions indicate that the planted area of organic rice is 2.3 ha, at best, in the modeled farm. The cultivation of organic rice is likely to be constrained compared with that of environmentally friendly rice, and even though it produces an increase in income, it does not necessarily exert positive effects on the environment. The findings suggest that when organic farming has negative impacts, countermeasures against problems that emerge through its practice should be included in the essential requirements for subsidization.

Suggested Citation

  • Kiyotaka Masuda, 2023. "Combined Application of a Multi-Objective Genetic Algorithm and Life Cycle Assessment for Evaluating Environmentally Friendly Farming Practices in Japanese Rice Farms," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10059-:d:1179043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    2. Ruben, Ruerd & Moll, Henk & Kuyvenhoven, Arie, 1998. "Integrating agricultural research and policy analysis: analytical framework and policy applications for bio-economic modelling," Agricultural Systems, Elsevier, vol. 58(3), pages 331-349, November.
    3. Kiyotaka Masuda, 2019. "Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    4. Eva Johansson & Abrar Hussain & Ramune Kuktaite & Staffan C. Andersson & Marie E. Olsson, 2014. "Contribution of Organically Grown Crops to Human Health," IJERPH, MDPI, vol. 11(4), pages 1-24, April.
    5. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "What prospective scenarios for 2035 will be compatible with reduced impact of French beef and dairy farm on climate change?," Agricultural Systems, Elsevier, vol. 157(C), pages 193-201.
    6. Luz Maria Castro & Fabian Härtl & Santiago Ochoa & Baltazar Calvas & Leonardo Izquierdo & Thomas Knoke, 2018. "Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations," Journal of Bioeconomics, Springer, vol. 20(2), pages 183-211, July.
    7. Hiroyuki Hasukawa & Yumi Inoda & Satoshi Toritsuka & Shigeto Sudo & Noriko Oura & Tomohito Sano & Yasuhito Shirato & Junta Yanai, 2021. "Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    8. Acs, S. & Berentsen, P.B.M. & Huirne, R.B.M., 2007. "Conversion to organic arable farming in The Netherlands: A dynamic linear programming analysis," Agricultural Systems, Elsevier, vol. 94(2), pages 405-415, May.
    9. World Bank, 2005. "Agriculture Investment Sourcebook," World Bank Publications - Books, The World Bank Group, number 7308.
    10. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    11. Dupré, Marie & Blazy, Jean-Marc & Michels, Thierry & Le Gal, Pierre-Yves, 2021. "Supporting policymakers in designing agricultural policy instruments: A participatory approach with a regional bioeconomic model in La Réunion (France)," Land Use Policy, Elsevier, vol. 100(C).
    12. Kiyotaka Masuda, 2016. "Optimization Model for Mitigating Global Warming at the Farm Scale: An Application to Japanese Rice Farms," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    13. van Calker, K.J. & Berentsen, P.B.M. & Giesen, G.W.J. & Huirne, R.B.M., 2008. "Maximising sustainability of Dutch dairy farming systems for different stakeholders: A modelling approach," Ecological Economics, Elsevier, vol. 65(2), pages 407-419, April.
    14. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weerahewa, Jeevika & Dayananda, Dasuni, 2023. "Land use changes and economic effects of alternative fertilizer policies: A simulation analysis with a bio-economic model for a Tank Village of Sri Lanka," Agricultural Systems, Elsevier, vol. 205(C).
    2. Rössert, Sebastian & Gosling, Elizabeth & Gandorfer, Markus & Knoke, Thomas, 2022. "Woodchips or potato chips? How enhancing soil carbon and reducing chemical inputs influence the allocation of cropland," Agricultural Systems, Elsevier, vol. 198(C).
    3. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    4. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    5. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    6. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    7. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    8. Luz Maria Castro & Fabian Härtl & Santiago Ochoa & Baltazar Calvas & Leonardo Izquierdo & Thomas Knoke, 2018. "Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations," Journal of Bioeconomics, Springer, vol. 20(2), pages 183-211, July.
    9. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    10. Heidari, Mohammad Davoud & Turner, Ian & Ardestani-Jaafari, Amir & Pelletier, Nathan, 2021. "Operations research for environmental assessment of crop-livestock production systems," Agricultural Systems, Elsevier, vol. 193(C).
    11. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    12. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    13. Mouratiadou, Ioanna & Russell, Graham & Topp, Cairistiona & Louhichi, Kamel, 2008. "Investigating The Economic And Water Quality Effects Of The 2003 Cap Reform On Arable Cropping Systems: A Scottish Case Study," 109th Seminar, November 20-21, 2008, Viterbo, Italy 44797, European Association of Agricultural Economists.
    14. Mouratiadou, Ioanna & Topp, Cairistiona & Moran, Dominic, 2008. "Modelling Agricultural Diffuse Pollution: CAP – WFD Interactions and Cost Effectiveness of Measures," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6461, European Association of Agricultural Economists.
    15. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    16. Bos, Jules F.F.P. & ten Berge, Hein F.M. & Verhagen, Jan & van Ittersum, Martin K., 2017. "Trade-offs in soil fertility management on arable farms," Agricultural Systems, Elsevier, vol. 157(C), pages 292-302.
    17. Argyris Kanellopoulos & Paul Berentsen & Thomas Heckelei & Martin Van Ittersum & Alfons Oude Lansink, 2010. "Assessing the Forecasting Performance of a Generic Bio‐Economic Farm Model Calibrated With Two Different PMP Variants," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 274-294, June.
    18. van der Linden, Aart & de Olde, Evelien M. & Mostert, Pim F. & de Boer, Imke J.M., 2020. "A review of European models to assess the sustainability performance of livestock production systems," Agricultural Systems, Elsevier, vol. 182(C).
    19. Jeroen C. J. Groot & José Cortez-Arriola & Walter A. H. Rossing & Ricardo D. Améndola Massiotti & Pablo Tittonell, 2016. "Capturing Agroecosystem Vulnerability and Resilience," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    20. Ditzler, Lenora & Komarek, Adam M. & Chiang, Tsai-Wei & Alvarez, Stéphanie & Chatterjee, Shantonu Abe & Timler, Carl & Raneri, Jessica E. & Carmona, Natalia Estrada & Kennedy, Gina & Groot, Jeroen C.J, 2019. "A model to examine farm household trade-offs and synergies with an application to smallholders in Vietnam," Agricultural Systems, Elsevier, vol. 173(C), pages 49-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10059-:d:1179043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.