IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p531-d71391.html
   My bibliography  Save this article

The Energy Savings and Environmental Benefits for Small and Medium Enterprises by Cloud Energy Management System

Author

Listed:
  • Yen-Chieh Tseng

    (Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • DaSheng Lee

    (Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan)

  • Cheng-Fang Lin

    (Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • Ching-Yuan Chang

    (Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

Abstract

Small and medium enterprises (SMES) play an important role in Taiwan’s economy. The reduction of energy costs and carbon dioxide (CO 2 ) emissions are critical to preserving the environment. This paper uses the experimental results from 65 sites, gathered over two years since 2012, to determine how the integration of Internet communication, cloud computing technologies and a cloud energy management service (cloud EMS) can reduce energy consumption by cost-effective means. The EMS has three levels: infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS). Working jointly with ChungHwa Telecom, Taiwan’s leading telecom service provider, data from detection devices, control devices, air-conditioning and lighting systems are all uploaded to a cloud EMS platform, to give a so called intelligent energy management network application service platform (IEN-ASP). Various energy saving management functions are developed using this platform: (1) air conditioning optimization; (2) lighting system optimization; (3) scheduling control; (4) power billing control and (5) occupancy detection and timing control. Using the international performance measurement and verification protocol (IPMVP), the energy used at the test sites, before and after the use of the IEN-ASP, are compared to calculate the energy saved. The experimental results show that there is an average energy saving of 5724 kWh per year, which represents a saving ratio of 5.84%. This translates to a total reduction in CO 2 emissions of 9,926,829 kg per year. Using the data collected, a regression model is used to demonstrate the correlation between the power that is consumed, the energy that is saved and the area of the sites. Another interesting result is that, if the experimental sites are maintained by experienced electricians or other personnel and EMS protocols are followed, the energy saving can be as great as 6.59%.

Suggested Citation

  • Yen-Chieh Tseng & DaSheng Lee & Cheng-Fang Lin & Ching-Yuan Chang, 2016. "The Energy Savings and Environmental Benefits for Small and Medium Enterprises by Cloud Energy Management System," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:531-:d:71391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rudberg, Martin & Waldemarsson, Martin & Lidestam, Helene, 2013. "Strategic perspectives on energy management: A case study in the process industry," Applied Energy, Elsevier, vol. 104(C), pages 487-496.
    2. Chin-Chi Cheng & Dasheng Lee & Ching Hung Wang & Shu Fen Lin & Hung-Peng Chang & Shang-Te Fang, 2015. "The Development of Cloud Energy Management," Energies, MDPI, vol. 8(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Rodriguez-Rosa & Ismael Payo-Gutierrez & Fernando J. Castillo-Garcia & Antonio Gonzalez-Rodriguez & Sergio Perez-Juarez, 2017. "Improving Energy Efficiency of an Autonomous Bicycle with Adaptive Controller Design," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    2. Junhu Ruan & Felix T. S. Chan & Fangwei Zhu & Xuping Wang & Jing Yang, 2016. "A Visualization Review of Cloud Computing Algorithms in the Last Decade," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    3. Rishang Long & Jian Liu & Chunliang Lu & Jiaqi Shi & Jianhua Zhang, 2017. "Coordinated Optimal Operation Method of the Regional Energy Internet," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    4. Stavros Gennitsaris & Miguel Castro Oliveira & George Vris & Antonis Bofilios & Theodora Ntinou & Ana Rita Frutuoso & Catarina Queiroga & John Giannatsis & Stella Sofianopoulou & Vassilis Dedoussis, 2023. "Energy Efficiency Management in Small and Medium-Sized Enterprises: Current Situation, Case Studies and Best Practices," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    5. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krieg, Thomas & Enzmann, Franziska & Sell, Dieter & Schrader, Jens & Holtmann, Dirk, 2017. "Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant," Applied Energy, Elsevier, vol. 195(C), pages 942-949.
    2. Fredrik von Malmborg & Peter A. Strachan, 2023. "Advocacy Coalitions and Paths to Policy Change for Promoting Energy Efficiency in European Industry," Energies, MDPI, vol. 16(9), pages 1-21, April.
    3. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Han, Jee-Hoon & Lee, In-Beum, 2014. "A systematic process integration framework for the optimal design and techno-economic performance analysis of energy supply and CO2 mitigation strategies," Applied Energy, Elsevier, vol. 125(C), pages 136-146.
    5. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    6. Tanoni, Giulia & Principi, Emanuele & Squartini, Stefano, 2024. "Non-Intrusive Load Monitoring in industrial settings: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Anna Sannö & Maria T. Johansson & Patrik Thollander & Johan Wollin & Birgitta Sjögren, 2019. "Approaching Sustainable Energy Management Operations in a Multinational Industrial Corporation," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    8. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    9. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    10. Aleksandra Sus & Rafał Trzaska & Maciej Wilczyński & Joanna Hołub-Iwan, 2023. "Strategies of Energy Suppliers and Consumer Awareness in Green Energy Optics," Energies, MDPI, vol. 16(4), pages 1-23, February.
    11. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    12. Milen Balbis Morejon & Juan Jose Cabello Eras & Alexis Sagastume Gutierrez & Vladimir Sousa Santos & Yabiel Perez Gomez & Juan Gabriel Rueda Bayona, 2019. "Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 103-112.
    13. English, J. & Niet, T. & Lyseng, B. & Palmer-Wilson, K. & Keller, V. & Moazzen, I. & Pitt, L. & Wild, P. & Rowe, A., 2017. "Impact of electrical intertie capacity on carbon policy effectiveness," Energy Policy, Elsevier, vol. 101(C), pages 571-581.
    14. Ahmed N. Abdalla & Yongfeng Ju & Muhammad Shahzad Nazir & Hai Tao, 2022. "A Robust Economic Framework for Integrated Energy Systems Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    15. Mulhall, Rachel Ann & Bryson, John R., 2014. "Energy price risk and the sustainability of demand side supply chains," Applied Energy, Elsevier, vol. 123(C), pages 327-334.
    16. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    17. Wei, Min & Hong, Seung Ho & Alam, Musharraf, 2016. "An IoT-based energy-management platform for industrial facilities," Applied Energy, Elsevier, vol. 164(C), pages 607-619.
    18. Kindström, Daniel & Ottosson, Mikael, 2016. "Local and regional energy companies offering energy services: Key activities and implications for the business model," Applied Energy, Elsevier, vol. 171(C), pages 491-500.
    19. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    20. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:531-:d:71391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.