IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i2p150-d63510.html
   My bibliography  Save this article

The Role of Rail Transit Systems in Reducing Energy and Carbon Dioxide Emissions: The Case of The City of Rio de Janeiro

Author

Listed:
  • Carlos Eduardo Sanches de Andrade

    (Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, bloco H, sala 111, Rio de Janeiro 21941-972, Brazil)

  • Márcio De Almeida D’Agosto

    (Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, bloco H, sala 111, Rio de Janeiro 21941-972, Brazil)

Abstract

The city of Rio de Janeiro, Brazil, has established, by municipal law, a goal of reducing greenhouse gas emissions of the transport system by 20% until 2020 compared to 2005. In order to reach this goal, the city’s public transport has been restructured with an emphasis on rail transit systems. The city will host the 2016 Olympic Games and this has encouraged the transformation of public transportation. One of the new projects is the construction of a new metro line, Line 4, to connect the downtown area to the city’s fastest growing part, the western region, which will also be a venue for many events during the Olympic Games. This article presents and applies a procedure for calculating energy use and emissions avoided by Line 4 by attracting users from other transport modes in the period from 2016 to 2040. The procedure uses a detailed demand forecast for this period and considers the local transport profile and the different fuels used. The net amount of carbon dioxide avoided was 55,449 tonnes per year and 44.53 grams per passenger kilometer. The avoided energy reached 0.76 MJ per passenger kilometer.

Suggested Citation

  • Carlos Eduardo Sanches de Andrade & Márcio De Almeida D’Agosto, 2016. "The Role of Rail Transit Systems in Reducing Energy and Carbon Dioxide Emissions: The Case of The City of Rio de Janeiro," Sustainability, MDPI, vol. 8(2), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:150-:d:63510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/2/150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/2/150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuri Cihat Onat & Murat Kucukvar & Omer Tatari, 2014. "Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles," Sustainability, MDPI, vol. 6(12), pages 1-38, December.
    2. Sweeting, Walter J. & Winfield, Patricia H., 2012. "Future transportation: Lifetime considerations and framework for sustainability assessment," Energy Policy, Elsevier, vol. 51(C), pages 927-938.
    3. Jeon, Christy Mihyeon & Amekudzi, Adjo A. & Guensler, Randall L., 2013. "Sustainability assessment at the transportation planning level: Performance measures and indexes," Transport Policy, Elsevier, vol. 25(C), pages 10-21.
    4. D'Agosto, Márcio de Almeida & Ribeiro, Suzana Kahn, 2009. "Assessing total and renewable energy in Brazilian automotive fuels. A life cycle inventory (LCI) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1326-1337, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    2. David Staš & Radim Lenort & Pavel Wicher & David Holman, 2015. "Green Transport Balanced Scorecard Model with Analytic Network Process Support," Sustainability, MDPI, vol. 7(11), pages 1-19, November.
    3. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    5. Maryam J. Al-Kaabi & Munjed A. Maraqa & Yasser S. Hawas, 2020. "Development of a Composite Sustainability Index for Roadway Intersection Design Alternatives in the UAE," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    6. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    7. Lee Liu & Jie Liu & Zhenguo Zhang, 2014. "Environmental Justice and Sustainability Impact Assessment: In Search of Solutions to Ethnic Conflicts Caused by Coal Mining in Inner Mongolia, China," Sustainability, MDPI, vol. 6(12), pages 1-19, December.
    8. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    9. Cotterman, Turner & Fuchs, Erica R.H. & Whitefoot, Kate S. & Combemale, Christophe, 2024. "The transition to electrified vehicles: Evaluating the labor demand of manufacturing conventional versus battery electric vehicle powertrains," Energy Policy, Elsevier, vol. 188(C).
    10. Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
    11. Dorota Burchart & Iga Przytuła, 2024. "Sustainability Assessment Methods for the Transport Sector Considering the Life Cycle Concept—A Review," Sustainability, MDPI, vol. 16(18), pages 1-17, September.
    12. Shuai Zhang & Xiaoman Zhao & Changwei Yuan & Xiu Wang, 2020. "Technological Bias and Its Influencing Factors in Sustainable Development of China’s Transportation," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    13. Artur Czech & Jerzy Lewczuk & Leonas Ustinovichius & Robertas Kontrimovičius, 2022. "Multi-Criteria Assessment of Transport Sustainability in Chosen European Union Countries: A Dynamic Approach," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    14. Onat, Nuri C. & Noori, Mehdi & Kucukvar, Murat & Zhao, Yang & Tatari, Omer & Chester, Mikhail, 2017. "Exploring the suitability of electric vehicles in the United States," Energy, Elsevier, vol. 121(C), pages 631-642.
    15. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2016. "Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options," Energy, Elsevier, vol. 112(C), pages 715-728.
    16. Chansoo Kim & Segun Goh & Myeong Seon Choi & Keumsook Lee & M. Y. Choi, 2020. "Hub-Periphery Hierarchy in Bus Transportation Networks: Gini Coefficients and the Seoul Bus System," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    17. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    18. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    19. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:150-:d:63510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.