IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i2p114-d62915.html
   My bibliography  Save this article

Technology Evaluation and Selection of 3DIC Integration Using a Three-Stage Fuzzy MCDM

Author

Listed:
  • Yen-Chun Lee

    (Office of Research and Development, National Chiao Tung University, 1001, Ta-Hsueh Rd., Hsinchu 30010, Taiwan)

  • C. James Chou

    (Institute of Management of Technology, National Chiao Tung University, 1001, Ta-Hsueh Rd., Hsinchu 30010, Taiwan)

Abstract

For the purpose of the sustainable development in the global semiconductor industry, emerging three-dimensional integrated circuit (3DIC) integration technologies have demonstrated their importance as potential candidates for extending the lifespan of Moore’s Law. This study aimed to explore a technology selection process involving a three-stage fuzzy multicriteria decision-making (MCDM) approach to facilitate the effective assessment of emerging 3DIC integration technologies. The fuzzy Delphi method was first used to determine the important criteria. The fuzzy analytic hierarchy process (fuzzy AHP) was then adopted to derive the weights of the criteria. The fuzzy technique for order of preference by similarity to ideal solution (fuzzy TOPSIS) was finally deployed to rate the alternatives. Empirical results indicate that market potential, time-to-market, and heterogeneous integration are the top three decision criteria for the selection of 3DIC integration technologies. Furthermore, 2.5D through-silicon interposer (TSI) is of primary interest to the Taiwanese semiconductor industry, followed by 3DIC through-silicon via (TSV), 3D packaging, and 3D silicon TSV (Si TSV). The proposed three-stage fuzzy decision model may potentially assist industry practitioners and government policy-makers in directing research and development investments and allocating resources more strategically.

Suggested Citation

  • Yen-Chun Lee & C. James Chou, 2016. "Technology Evaluation and Selection of 3DIC Integration Using a Three-Stage Fuzzy MCDM," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:114-:d:62915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/2/114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/2/114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van de Kaa, Geerten & Rezaei, Jafar & Kamp, Linda & de Winter, Allard, 2014. "Photovoltaic technology selection: A fuzzy MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 662-670.
    2. Awasthi, Anjali & Chauhan, Satyaveer S. & Goyal, S.K., 2010. "A fuzzy multicriteria approach for evaluating environmental performance of suppliers," International Journal of Production Economics, Elsevier, vol. 126(2), pages 370-378, August.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keun-Sik Park & Young-Joon Seo & A-Rom Kim & Min-Ho Ha, 2018. "Ship Acquisition of Shipping Companies by Sale & Purchase Activities for Sustainable Growth: Exploratory Fuzzy-AHP Application," Sustainability, MDPI, vol. 10(6), pages 1-13, May.
    2. Parolin, Giácomo & McAloone, Tim C. & Pigosso, Daniela C.A., 2024. "How can technology assessment tools support sustainable innovation? A systematic literature review and synthesis," Technovation, Elsevier, vol. 129(C).
    3. Min-Sung Kim & Eul-Bum Lee & In-Hye Jung & Douglas Alleman, 2018. "Risk Assessment and Mitigation Model for Overseas Steel-Plant Project Investment with Analytic Hierarchy Process—Fuzzy Inference System," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    4. Katarzyna Halicka, 2020. "Technology Selection Using the TOPSIS Method," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 14(1), pages 85-96.
    5. Zefang Zhao & Yanlong Guo & Haiyan Wei & Qiao Ran & Wei Gu, 2017. "Predictions of the Potential Geographical Distribution and Quality of a Gynostemma pentaphyllum Base on the Fuzzy Matter Element Model in China," Sustainability, MDPI, vol. 9(7), pages 1-15, July.
    6. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    2. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    3. Malik, M.M. & Abdallah, S. & Hussain, M., 2016. "Assessing supplier environmental performance: Applying Analytical Hierarchical Process in the United Arab Emirates healthcare chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1313-1321.
    4. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Shuang Yao & Donghua Yu & Yan Song & Hao Yao & Yuzhen Hu & Benhai Guo, 2018. "Dry Bulk Carrier Investment Selection through a Dual Group Decision Fusing Mechanism in the Green Supply Chain," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    6. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    7. Alptekin Ulutaş & Ayşe Topal & Dragan Pamučar & Željko Stević & Darjan Karabašević & Gabrijela Popović, 2022. "A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    8. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    9. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    10. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    11. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    12. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    13. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    14. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    15. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    16. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    17. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    18. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    19. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    20. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:2:p:114-:d:62915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.