IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i1p87-d62364.html
   My bibliography  Save this article

Evaluation and Clustering Maps of Groundwater Wells in the Red Beds of Chengdu, Sichuan, China

Author

Listed:
  • Haijing Zhang

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Key Laboratory of Digital Mapping and Land Information Application Engineering, National Administration of Surveying, Mapping and Geo-information, Wuhan University, 129 Luoyu Road, Wuhan 430072, China)

  • Qingyun Du

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Key Laboratory of Digital Mapping and Land Information Application Engineering, National Administration of Surveying, Mapping and Geo-information, Wuhan University, 129 Luoyu Road, Wuhan 430072, China)

  • Min Yao

    (Chengdu Land and Resource Information Center, 69 Jinxiu West Road, Chengdu 610072, China)

  • Fu Ren

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Key Laboratory of Digital Mapping and Land Information Application Engineering, National Administration of Surveying, Mapping and Geo-information, Wuhan University, 129 Luoyu Road, Wuhan 430072, China)

Abstract

Since the start of the 21st century, groundwater wells have been placed in red beds to solve the problem of scarce water resources in Southwest China and have rapidly expanded to other areas. By providing examples of cartography in Chengdu and Sichuan, China, and using the locations of groundwater in fractures and pores when monitoring and managing red sandstone and mudstone wells, a series of maps of groundwater wells at different scales in the red beds of Chengdu was obtained. Most of the wells located in red beds are located in Jintang, Dayi, and Qingbaijiang and exhibit different cluster features. The kernel density estimation and spatial cluster analysis classification methods were used based on the Density Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) in three concentrated areas. This method describes the trends of the clustering results and the relationships between the locations of residents and red bed wells. The cartography results show that the groundwater wells in red beds are mainly distributed in hilly areas and partially correspond with the locations of villages and settlements, particularly their geological and topographic factors, which satisfy the maximum requirements of water use and recycling in Southwest China. The irrigation wells located in red beds are not only reliable and efficient but also replace inefficient water resources in the recharge-runoff-discharge groundwater process, which promotes the sustainable development of groundwater resources.

Suggested Citation

  • Haijing Zhang & Qingyun Du & Min Yao & Fu Ren, 2016. "Evaluation and Clustering Maps of Groundwater Wells in the Red Beds of Chengdu, Sichuan, China," Sustainability, MDPI, vol. 8(1), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:1:p:87-:d:62364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/1/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/1/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangzheng Deng & Fan Zhang & Zhan Wang & Xing Li & Tao Zhang, 2014. "An Extended Input Output Table Compiled for Analyzing Water Demand and Consumption at County Level in China," Sustainability, MDPI, vol. 6(6), pages 1-20, May.
    2. Minjun Shi & Xiaojun Wang & Hong Yang & Tao Wang, 2014. "Pricing or Quota? A Solution to Water Scarcity in Oasis Regions in China: A Case Study in the Heihe River Basin," Sustainability, MDPI, vol. 6(11), pages 1-20, October.
    3. Alexander Fernald & Vincent Tidwell & José Rivera & Sylvia Rodríguez & Steven Guldan & Caitriana Steele & Carlos Ochoa & Brian Hurd & Marquita Ortiz & Kenneth Boykin & Andres Cibils, 2012. "Modeling Sustainability of Water, Environment, Livelihood, and Culture in Traditional Irrigation Communities and Their Linked Watersheds," Sustainability, MDPI, vol. 4(11), pages 1-25, November.
    4. Sabrina Sorlini & Daniela Palazzini & Joseph M. Sieliechi & Martin B. Ngassoum, 2013. "Assessment of Physical-Chemical Drinking Water Quality in the Logone Valley (Chad-Cameroon)," Sustainability, MDPI, vol. 5(7), pages 1-17, July.
    5. Sharon A. Jones & Kristen L. Sanford Bernhardt & Mark Kennedy & Kelsey Lantz & Trent Holden, 2013. "Collecting Critical Data to Assess the Sustainability of Rural Infrastructure in Low-Income Countries," Sustainability, MDPI, vol. 5(11), pages 1-19, November.
    6. Richard Tingem Munang & Ibrahim Thiaw & Mike Rivington, 2011. "Ecosystem Management: Tomorrow’s Approach to Enhancing Food Security under a Changing Climate," Sustainability, MDPI, vol. 3(7), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    2. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Jinyan Zhan & Fan Zhang & Zhihui Li & Yue Zhang & Wei Qi, 2020. "Evaluation of food security based on DEA method: a case study of Heihe River Basin," Annals of Operations Research, Springer, vol. 290(1), pages 697-706, July.
    4. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    5. Ralph Lasage & Sanne Muis & Carolina S. E. Sardella & Michiel A. Van Drunen & Peter H. Verburg & Jeroen C. J. H. Aerts, 2015. "A Stepwise, Participatory Approach to Design and Implement Community Based Adaptation to Drought in the Peruvian Andes," Sustainability, MDPI, vol. 7(2), pages 1-32, February.
    6. Nazmul Huq & Alexander Stubbings, 2015. "How is the Role of Ecosystem Services Considered in Local Level Flood Management Policies: Case Study in Cumbria, England," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-29, December.
    7. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    8. Pathak, Ravi & Thakur, Shinny & Negi, Vikram S. & Rawal, Ranbeer S. & Bahukhandi, Amit & Durgapal, Kamini & Barola, Anjali & Tewari, Deep & Bhatt, Indra D., 2021. "Ecological condition and management status of Community Forests in Indian western Himalaya," Land Use Policy, Elsevier, vol. 109(C).
    9. Molinos-Senante, María & Villegas, Andres & Maziotis, Alexandros, 2019. "Are water tariffs sufficient incentives to reduce water leakages? An empirical approach for Chile," Utilities Policy, Elsevier, vol. 61(C).
    10. Yiyu Feng & Ming Chang & Erga Luo & Jing Liu, 2023. "Has Property Rights Reform of China’s Farmland Water Facilities Improved Farmers’ Irrigation Efficiency?—Evidence from a Typical Reform Pilot in China’s Yunnan Province," Agriculture, MDPI, vol. 13(2), pages 1-27, January.
    11. Qing Zhou & Yali Zhang & Feng Wu, 2022. "Can Water Price Improve Water Productivity? A Water-Economic-Model-Based Study in Heihe River Basin, China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    12. Wu, Feng & Zhan, Jinyan & Güneralp, İnci, 2015. "Present and future of urban water balance in the rapidly urbanizing Heihe River Basin, Northwest China," Ecological Modelling, Elsevier, vol. 318(C), pages 254-264.
    13. Rawlins, Jonathan M. & De Lange, Willem J. & Fraser, Gavin C.G., 2018. "An Ecosystem Service Value Chain Analysis Framework: A Conceptual Paper," Ecological Economics, Elsevier, vol. 147(C), pages 84-95.
    14. Jay Mar D. Quevedo & Yuta Uchiyama & Kevin Muhamad Lukman & Ryo Kohsaka, 2020. "How Blue Carbon Ecosystems Are Perceived by Local Communities in the Coral Triangle: Comparative and Empirical Examinations in the Philippines and Indonesia," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    15. Fekadu Megersa Senbeta & Yang Shu, 2019. "Project Implementation Management Modalities and Their Implications on Sustainability of Water Services in Rural Areas in Ethiopia: Are Community-Managed Projects More Effective?," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    16. Chenjia Zhang & Yiping Fang & Xiujuan Chen & Tian Congshan, 2019. "Bibliometric Analysis of Trends in Global Sustainable Livelihood Research," Sustainability, MDPI, vol. 11(4), pages 1-28, February.
    17. Abiodun O. Adeniji & Omobola O. Okoh & Anthony I. Okoh, 2017. "Petroleum Hydrocarbon Profiles of Water and Sediment of Algoa Bay, Eastern Cape, South Africa," IJERPH, MDPI, vol. 14(10), pages 1-21, October.
    18. Turner, Benjamin L. & Kodali, Srinadh, 2020. "Soil system dynamics for learning about complex, feedback-driven agricultural resource problems: model development, evaluation, and sensitivity analysis of biophysical feedbacks," Ecological Modelling, Elsevier, vol. 428(C).
    19. Gou, Fang & Yin, Wen & Hong, Yu & van der Werf, Wopke & Chai, Qiang & Heerink, Nico & van Ittersum, Martin K., 2017. "On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China," Agricultural Systems, Elsevier, vol. 151(C), pages 96-105.
    20. Wei Yang & Junnian Song & Yoshiro Higano & Jie Tang, 2015. "An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution," Sustainability, MDPI, vol. 7(2), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:1:p:87-:d:62364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.