IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2013i1p123-135d31605.html
   My bibliography  Save this article

Contours of a Resilient Global Future

Author

Listed:
  • Michael D. Gerst

    (Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
    Tellus Institute, 11 Arlington Street, Boston, MA 02116, USA)

  • Paul D. Raskin

    (Tellus Institute, 11 Arlington Street, Boston, MA 02116, USA)

  • Johan Rockström

    (Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, Stockholm SE-106 91, Sweden)

Abstract

Humanity confronts a daunting double challenge in the 21st century: meeting widely-held aspirations for equitable human development while preserving the bio-physical integrity of Earth systems. Extant scientific attempts to quantify futures that address these sustainability challenges are often not comprehensive across environmental and social drivers of global change, or rely on quantification methods that largely exclude deep social, cultural, economic, and technological shifts, leading to a constrained set of possibilities. In search of a broader set of trajectories, we combine three previously separate streams of inquiry: scenario analysis, planetary boundaries, and targets for human development. Our analysis indicates there are plausible, diverse scenarios that remain within Earth’s safe bio-physical operating space and achieve a variety of development targets. However, dramatic social and technological changes are required to avert the social-ecological risks of a conventional development trajectory. One identified narrative, which is predominant in the scenario literature, envisions marginal changes to the social and cultural drivers underlying conventional growth trajectories. As a result, it requires unprecedented levels of international cooperation, alignment of powerful conflicting interests, and political willpower to bend technological change in a sustainable direction. We posit that a more viable and robust scenario might lie in the coupling of transformative social-cultural and technological changes, which set the necessary conditions for a transition to a resilient global future. While clearly a first step, our analysis points to the need for more in-depth exploration of the mechanisms and determinant forces for such unconventional futures.

Suggested Citation

  • Michael D. Gerst & Paul D. Raskin & Johan Rockström, 2013. "Contours of a Resilient Global Future," Sustainability, MDPI, vol. 6(1), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:6:y:2013:i:1:p:123-135:d:31605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/1/123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/1/123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    2. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    3. Paul J. Crutzen, 2002. "Geology of mankind," Nature, Nature, vol. 415(6867), pages 23-23, January.
    4. Kawachi, I. & Kennedy, B.P. & Lochner, K. & Prothrow-Stith, D., 1997. "Social capital, income inequality, and mortality," American Journal of Public Health, American Public Health Association, vol. 87(9), pages 1491-1498.
    5. Raskin, Paul D., 2008. "World lines: A framework for exploring global pathways," Ecological Economics, Elsevier, vol. 65(3), pages 461-470, April.
    6. Paul D. Raskin & Christi Electris & Richard A. Rosen, 2010. "The Century Ahead: Searching for Sustainability," Sustainability, MDPI, vol. 2(8), pages 1-26, August.
    7. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    8. David Griggs & Mark Stafford-Smith & Owen Gaffney & Johan Rockström & Marcus C. Öhman & Priya Shyamsundar & Will Steffen & Gisbert Glaser & Norichika Kanie & Ian Noble, 2013. "Sustainable development goals for people and planet," Nature, Nature, vol. 495(7441), pages 305-307, March.
    9. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    10. J. R. Petit & J. Jouzel & D. Raynaud & N. I. Barkov & J.-M. Barnola & I. Basile & M. Bender & J. Chappellaz & M. Davis & G. Delaygue & M. Delmotte & V. M. Kotlyakov & M. Legrand & V. Y. Lipenkov & C. , 1999. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica," Nature, Nature, vol. 399(6735), pages 429-436, June.
    11. Simon L. Lewis, 2012. "We must set planetary boundaries wisely," Nature, Nature, vol. 485(7399), pages 417-417, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    2. Zhu, Bing & Nguyen, Mai & Sarm Siri, Nang & Malik, Ashish, 2022. "Towards a transformative model of circular economy for SMEs," Journal of Business Research, Elsevier, vol. 144(C), pages 545-555.
    3. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    4. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    5. Pradeep Racherla & Munir Mandviwalla, 2013. "Moving from Access to Use of the Information Infrastructure: A Multilevel Sociotechnical Framework," Information Systems Research, INFORMS, vol. 24(3), pages 709-730, September.
    6. Alessandro Grimaldi & Antonio Lopolito & Massimo Monteleone & Piergiuseppe Morone & Maurizio Prosperi, 2009. "Wp 6: Modelling Stakeholder Interplay And Policy Scenarios For Biorefinery And Biodiesel Production," Quaderni DSEMS 02-2009, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    7. Mock, Mirijam & Omann, Ines & Polzin, Christine & Spekkink, Wouter & Schuler, Julia & Pandur, Vlad & Brizi, Ambra & Panno, Angelo, 2019. "“Something inside me has been set in motion”: Exploring the psychological wellbeing of people engaged in sustainability initiatives," Ecological Economics, Elsevier, vol. 160(C), pages 1-11.
    8. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    9. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    10. Lucy Baker, 2016. "Post-apartheid electricity policy and the emergence of South Africa's renewable energy sector," WIDER Working Paper Series wp-2016-15, World Institute for Development Economic Research (UNU-WIDER).
    11. Nina Savela & Jarkko Levänen & Sara Lindeman & Nnenesi Kgabi & Heikki Koivisto & Meri Olenius & Samuel John & Damas Mashauri & Minna M. Keinänen-Toivola, 2020. "Rapid Urbanization and Infrastructure Pressure: Comparing the Sustainability Transition Potential of Water and Energy Regimes in Namibia," World, MDPI, vol. 1(2), pages 1-18, July.
    12. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    13. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    14. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    15. Sauermann, Henry & Vohland, Katrin & Antoniou, Vyron & Balázs, Bálint & Göbel, Claudia & Karatzas, Kostas & Mooney, Peter & Perelló, Josep & Ponti, Marisa & Samson, Roeland & Winter, Silvia, 2020. "Citizen science and sustainability transitions," Research Policy, Elsevier, vol. 49(5).
    16. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    17. Alkemade & Simona Negro & Neil Thompson & Marko Hekkert, 2011. "Towards a micro-level explanation of sustainability transitions: entrepreneurial strategies," Innovation Studies Utrecht (ISU) working paper series 11-01, Utrecht University, Department of Innovation Studies, revised Apr 2011.
    18. Katherine Daniell & Jean-Daniel Rinaudo & Noel Wai Wah Chan & Céline Nauges & Quentin Grafton, 2015. "Understanding and Managing Urban Water in Transition," Post-Print hal-01290502, HAL.
    19. Konstantinos Karanasios & Paul Parker, 2018. "Explaining the Diffusion of Renewable Electricity Technologies in Canadian Remote Indigenous Communities through the Technological Innovation System Approach," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    20. Erika Michela Dematteis & Jussara Barale & Marta Corno & Alessandro Sciullo & Marcello Baricco & Paola Rizzi, 2021. "Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective," Energies, MDPI, vol. 14(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2013:i:1:p:123-135:d:31605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.