IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i12p5391-5415d31322.html
   My bibliography  Save this article

Optimizing the Regional Industrial Structure Based on the Environmental Carrying Capacity: An Inexact Fuzzy Multi-Objective Programming Model

Author

Listed:
  • Wenyi Wang

    (School of Environment, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, China)

  • Weihua Zeng

    (School of Environment, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, China)

Abstract

An inexact fuzzy multi-objective programming model (IFMOP) based on the environmental carrying capacity is provided for industrial structure optimization problems. In the IFMOP model, both fuzzy linear programming (FLP) and inexact linear programming (ILP) methods are introduced into a multi-objective programming framework. It allows uncertainties to be directly communicated into the problem solving processing, and it can effectively reflect the complexity and uncertainty of an industrial system without impractical simplification. The two objective functions utilized in the optimization study are the maximum total output value and population size, and the constraints include water environmental capacity, water resource supply, atmospheric environmental capacity and energy supply. The model is subsequently employed in a realistic case for industrial development in the Tongzhou district, Beijing, China. The results demonstrate that the model can help to analyze whether the environmental carrying capacity of Tongzhou can meet the needs of the social economic objectives in the new town plan in the two scenarios and can assist decision makers in generating stable and balanced industrial structure patterns with consideration of the resources, energy and environmental constraints to meet the maximum social economic efficiency.

Suggested Citation

  • Wenyi Wang & Weihua Zeng, 2013. "Optimizing the Regional Industrial Structure Based on the Environmental Carrying Capacity: An Inexact Fuzzy Multi-Objective Programming Model," Sustainability, MDPI, vol. 5(12), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:12:p:5391-5415:d:31322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/12/5391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/12/5391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles Figuières & Hervé Guyomard & Gilles Rotillon, 2010. "Sustainable Development: Between Moral Injunctions and Natural Constraints," Sustainability, MDPI, vol. 2(11), pages 1-15, November.
    2. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    3. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    4. Giannoccaro, Ilaria & Pontrandolfo, Pierpaolo & Scozzi, Barbara, 2003. "A fuzzy echelon approach for inventory management in supply chains," European Journal of Operational Research, Elsevier, vol. 149(1), pages 185-196, August.
    5. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianming Xu & Qinfei Yu & Xiaoyang Hou, 2023. "Sustainability Assessment of Steel Industry in the Belt and Road Area Based on DPSIR Model," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    2. Bowen Shen & Shijie Zhang, 2022. "Determinants of Workplace Choice: How Important Is the City’s Ecological Environment in Attracting Jobseekers in China," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    3. Zhiping Zhang & Fuqiang Xia & Degang Yang & Yufang Zhang & Tianyi Cai & Rongwei Wu, 2019. "Comparative Study of Environmental Assessment Methods in the Evaluation of Resources and Environmental Carrying Capacity—A Case Study in Xinjiang, China," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    4. Xinhao Min & Yanning Wang & Jun Chen, 2022. "Resource Carrying Capacity Evaluation Based on Fuzzy Evaluation: Validation Using Karst Landscape Region in Southwest China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    5. Chanhoon Jung & Chanwoo Kim & Solhee Kim & Kyo Suh, 2018. "Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    6. Yingxue Rao & Min Zhou & Chunxia Cao & Shukui Tan & Yan Song & Zuo Zhang & Deyi Dai & Guoliang Ou & Lu Zhang & Xin Nie & Aiping Deng & Zhuoma Cairen, 2019. "Exploring the quantitive relationship between economic benefit and environmental constraint using an inexact chance-constrained fuzzy programming based industrial structure optimization model," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 2199-2220, July.
    7. Wenqi Wang & Yuhong Sun & Jing Wu, 2018. "Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    8. Xuhui Ding & Zhu Fu & Hongwen Jia, 2019. "Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Opschoor, J. (Hans) B., 1995. "Ecospace and the fall and rise of throughput intensity," Ecological Economics, Elsevier, vol. 15(2), pages 137-140, November.
    2. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    3. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-28, June.
    4. Ghimire, Narishwar & Woodward, Richard T., 2013. "Under- and over-use of pesticides: An international analysis," Ecological Economics, Elsevier, vol. 89(C), pages 73-81.
    5. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    6. Shuaibing Zhang & Kaixu Zhao & Shuoyang Ji & Yafang Guo & Fengqi Wu & Jingxian Liu & Fei Xie, 2022. "Evolution Characteristics, Eco-Environmental Response and Influencing Factors of Production-Living-Ecological Space in the Qinghai–Tibet Plateau," Land, MDPI, vol. 11(7), pages 1-26, July.
    7. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    8. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    9. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    10. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    11. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Thomas Bolognesi, 2015. "The water vulnerability of metro and megacities: An investigation of structural determinants," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 123-133, May.
    13. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    14. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    15. B. Venkatraja, 2021. "Does China exhibit any evidence of an Environmental Kuznets Curve? An ARDL bounds testing approach," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 88-110,111-.
    16. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    17. Ranjan, Ram & Shortle, James, 2007. "The environmental Kuznets curve when the environment exhibits hysteresis," Ecological Economics, Elsevier, vol. 64(1), pages 204-215, October.
    18. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    19. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    20. Thomas Bassetti & Nikos Benos & Stelios Karagiannis, 2013. "CO 2 Emissions and Income Dynamics: What Does the Global Evidence Tell Us?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 101-125, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:12:p:5391-5415:d:31322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.