IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1728-d148936.html
   My bibliography  Save this article

Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment

Author

Listed:
  • Wenqi Wang

    (College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China)

  • Yuhong Sun

    (Yunnan Provincial Appraisal Center for Environmental Engineering, Kunming 650032, China)

  • Jing Wu

    (College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China)

Abstract

Though we are in urgent need of environmental warnings to slow environmental deterioration, currently, there is no internationally concise method for environmental warnings. In addition, the existing approaches do not combine the three aspects of ecology, resources, and environment. At the same time, the three elements of the environment (air, water, and soil) are separated in most environmental warning systems. Thus, the method this paper gives is an innovative attempt and aims to make environmental assessment more practical. This paper establishes the index system of an environmental early warning based on the Driving–Pressure–State–Influence–Response (DPSIR) model. The Analytic Hierarchy Process (AHP) method was used to determine the weights. Next, single and integrated index methods further assess the environmental warning state, in which the weighted summation method is used to summarize the data and results. The case of Tianjin is used to confirm the applicability of this method. In conclusion, the method in this paper is more well-behaved and, therefore, more suitable to assist cities in their environmental assessment.

Suggested Citation

  • Wenqi Wang & Yuhong Sun & Jing Wu, 2018. "Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1728-:d:148936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Małgorzata Świąder & Szymon Szewrański & Jan K. Kazak, 2018. "Foodshed as an Example of Preliminary Research for Conducting Environmental Carrying Capacity Analysis," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    2. Chen, Lili & Song, Ge & Meadows, Michael E. & Zou, Chaohui, 2018. "Spatio-temporal evolution of the early-warning status of cultivated land and its driving factors: A case study of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 72(C), pages 280-292.
    3. Wenyi Wang & Weihua Zeng, 2013. "Optimizing the Regional Industrial Structure Based on the Environmental Carrying Capacity: An Inexact Fuzzy Multi-Objective Programming Model," Sustainability, MDPI, vol. 5(12), pages 1-25, December.
    4. Singh, Rana Pratap & Nachtnebel, Hans Peter, 2016. "Analytical hierarchy process (AHP) application for reinforcement of hydropower strategy in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 43-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rita Lankauskienė & Vitalija Simonaitytė & Živilė Gedminaitė-Raudonė & Jerker Johnson, 2022. "Addressing the European Green Deal with Smart Specialization Strategies in the Baltic Sea Region," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Zeenat Zia & Shuming Liu & Muhammad Waqas Akbar & Fei Meng & Yuelan Peng, 2024. "Moderating role of attitude in strengthening the practices and behavior of ecological civilization in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20909-20930, August.
    3. Xinhao Min & Yanning Wang & Jun Chen, 2022. "Resource Carrying Capacity Evaluation Based on Fuzzy Evaluation: Validation Using Karst Landscape Region in Southwest China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    4. Junwu Wang & Yipeng Liu & Mingyang Liu & Suikuan Wang & Jiaji Zhang & Han Wu, 2022. "Multi-Phase Environmental Impact Assessment of Marine Ecological Restoration Project Based on DPSIR-Cloud Model," IJERPH, MDPI, vol. 19(20), pages 1-22, October.
    5. Ebrahim Karimi Sangchini & Amin Salehpour Jam & Jamal Mosaffaie, 2022. "Flood risk management in Khorramabad watershed using the DPSIR framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3101-3121, December.
    6. Menglu Chen & Juliang Jin & Shaowei Ning & Yuliang Zhou & Parmeshwar Udmale, 2020. "Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    7. Fernando Ramos-Quintana & Héctor Sotelo-Nava & Hugo Saldarriaga-Noreña & Efraín Tovar-Sánchez, 2019. "Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach," Sustainability, MDPI, vol. 11(7), pages 1-29, April.
    8. Xiaojun Zhang & Weiqiao Wang & Yunan Bai & Yong Ye, 2022. "How Has China Structured Its Ecological Governance Policy System?—A Case from Fujian Province," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    9. Elena Cervelli & Stefania Pindozzi & Emilia Allevato & Luigi Saulino & Roberto Silvestro & Ester Scotto di Perta & Antonio Saracino, 2022. "Landscape Planning Integrated Approaches to Support Post-Wildfire Restoration in Natural Protected Areas: The Vesuvius National Park Case Study," Land, MDPI, vol. 11(7), pages 1-25, July.
    10. Lei Wang & Bo Yu & Fang Chen & Ning Wang & Congrong Li, 2022. "An Analysis of Eco–Environmental Changes in Rural Areas in China Based on Sustainability Indicators between 2000 and 2015," Land, MDPI, vol. 11(8), pages 1-16, August.
    11. Xiaolei Geng & Dou Zhang & Chengwei Li & Yanyao Li & Jingling Huang & Xiangrong Wang, 2020. "Application and Comparison of Multiple Models on Agricultural Sustainability Assessments: A Case Study of the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    12. I-Shin Chang & Wenqi Wang & Jing Wu, 2019. "To Strengthen the Practice of Ecological Civilization in China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    13. Yingbing Liu & Wenying Du & Nengcheng Chen & Xiaolei Wang, 2020. "Construction and Evaluation of the Integrated Perception Ecological Environment Indicator (IPEEI) Based on the DPSIR Framework for Smart Sustainable Cities," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    14. Min Wang & Xianli Zhao & Qunxi Gong & Zhigeng Ji, 2019. "Measurement of Regional Green Economy Sustainable Development Ability Based on Entropy Weight-Topsis-Coupling Coordination Degree—A Case Study in Shandong Province, China," Sustainability, MDPI, vol. 11(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanhoon Jung & Chanwoo Kim & Solhee Kim & Kyo Suh, 2018. "Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    2. Zhiping Zhang & Fuqiang Xia & Degang Yang & Yufang Zhang & Tianyi Cai & Rongwei Wu, 2019. "Comparative Study of Environmental Assessment Methods in the Evaluation of Resources and Environmental Carrying Capacity—A Case Study in Xinjiang, China," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    3. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    4. Olga Porro & Francesc Pardo-Bosch & Núria Agell & Mónica Sánchez, 2020. "Understanding Location Decisions of Energy Multinational Enterprises within the European Smart Cities’ Context: An Integrated AHP and Extended Fuzzy Linguistic TOPSIS Method," Energies, MDPI, vol. 13(10), pages 1-29, May.
    5. Marta Sylla & Tadeusz Lasota & Szymon Szewrański, 2019. "Valuing Environmental Amenities in Peri-Urban Areas: Evidence from Poland," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    6. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    7. José Luis Vicente-Vicente & Esther Sanz-Sanz & Claude Napoléone & Michel Moulery & Annette Piorr, 2021. "Foodshed, Agricultural Diversification and Self-Sufficiency Assessment: Beyond the Isotropic Circle Foodshed—A Case Study from Avignon (France)," Agriculture, MDPI, vol. 11(2), pages 1-19, February.
    8. Karatayev, Marat & Hall, Stephen & Kalyuzhnova, Yelena & Clarke, Michèle L., 2016. "Renewable energy technology uptake in Kazakhstan: Policy drivers and barriers in a transitional economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 120-136.
    9. Mousavi, M. & Gitinavard, H. & Mousavi, S.M., 2017. "A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 774-787.
    10. Ana Zazo-Moratalla & Isidora Troncoso-González & Andrés Moreira-Muñoz, 2019. "Regenerative Food Systems to Restore Urban-Rural Relationships: Insights from the Concepción Metropolitan Area Foodshed (Chile)," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    11. Dioba, Albina & Giannakopoulou, Amalia & Struthers, David & Stamos, Angelos & Dewitte, Siegfried & Fróes, Isabel, 2024. "Identifying key barriers to joining an energy community using AHP," Energy, Elsevier, vol. 299(C).
    12. Waleed A. Hammood & Ruzaini Abdullah Arshah & Salwana Mohamad Asmara & Hussam Al Halbusi & Omar A. Hammood & Salem Al Abri, 2021. "A Systematic Review on Flood Early Warning and Response System (FEWRS): A Deep Review and Analysis," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    13. Bowen Shen & Shijie Zhang, 2022. "Determinants of Workplace Choice: How Important Is the City’s Ecological Environment in Attracting Jobseekers in China," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    14. Hualin Xie & Yanwei Zhang & Yongrok Choi, 2018. "Measuring the Cultivated Land Use Efficiency of the Main Grain-Producing Areas in China under the Constraints of Carbon Emissions and Agricultural Nonpoint Source Pollution," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    15. Xinhao Min & Yanning Wang & Jun Chen, 2022. "Resource Carrying Capacity Evaluation Based on Fuzzy Evaluation: Validation Using Karst Landscape Region in Southwest China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    16. Madhusudhan Adhikari & Laxman Prasad Ghimire & Yeonbae Kim & Prakash Aryal & Sundar Bahadur Khadka, 2020. "Identification and Analysis of Barriers against Electric Vehicle Use," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    17. Hennig, Thomas, 2016. "Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1232-1246.
    18. Kurek, Katarzyna A. & Heijman, Wim & van Ophem, Johan & Gędek, Stanisław & Strojny, Jacek, 2020. "The impact of geothermal resources on the competitiveness of municipalities: evidence from Poland," Renewable Energy, Elsevier, vol. 151(C), pages 1230-1239.
    19. Anatolii Kucher & Maria Hełdak & Lesia Kucher & Beata Raszka, 2019. "Factors Forming the Consumers’ Willingness to Pay a Price Premium for Ecological Goods in Ukraine," IJERPH, MDPI, vol. 16(5), pages 1-14, March.
    20. Yingxue Rao & Min Zhou & Chunxia Cao & Shukui Tan & Yan Song & Zuo Zhang & Deyi Dai & Guoliang Ou & Lu Zhang & Xin Nie & Aiping Deng & Zhuoma Cairen, 2019. "Exploring the quantitive relationship between economic benefit and environmental constraint using an inexact chance-constrained fuzzy programming based industrial structure optimization model," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 2199-2220, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1728-:d:148936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.