IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2086-d1602082.html
   My bibliography  Save this article

Climate Change vs. Circular Economy: Challenges of the Most Common Route for Recycling Gold from WEEE

Author

Listed:
  • Benjamin Fritz

    (Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

  • Mario Schmidt

    (Institute for Industrial Ecology, Pforzheim University, 75175 Pforzheim, Germany)

Abstract

Gold production poses significant environmental challenges, including resource depletion, CO 2 emissions, and toxic chemical usage. Similarly, improper WEEE management harms the environment. However, WEEE contains valuable metals such as gold, making it central to circular economy (CE) strategies and an alternative to mining. This study assesses the climate impact of pyrometallurgical gold recovery from WEEE using life cycle assessment (LCA). The study found that the carbon footprint of producing gold pyrometallurgically from WEEE is 2000 kg CO 2 eq/kg. These emissions are largely tied to the carbon content of waste, meaning that low-carbon energy sources have a limited impact. This creates a conflict between CE goals and CO 2 reduction. Scenario analysis shows that utilizing waste heat for district heating significantly lowers emissions. The other strategies used to improve the environmental performance include separating the plastic fraction before smelting, using biogenic plastic in WEEE, and carbon capture and storage (CCS). Transport accounts for just 10% of the total carbon footprint. Future regulations must address multiple factors—EEE production, waste management, smelter infrastructure, global socioeconomic dynamics, and consumer behavior—as higher recycling rates alone will not solve WEEE challenges.

Suggested Citation

  • Benjamin Fritz & Mario Schmidt, 2025. "Climate Change vs. Circular Economy: Challenges of the Most Common Route for Recycling Gold from WEEE," Sustainability, MDPI, vol. 17(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2086-:d:1602082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario Schmidt & Jochen Heinrich & Ingwar Huensche, 2024. "Carbon Footprint of Additively Manufactured Precious Metals Products," Resources, MDPI, vol. 13(11), pages 1-14, November.
    2. Huang, Y.W. & Chen, M.Q. & Li, Q.H. & Xing, W., 2018. "A critical evaluation on chemical exergy and its correlation with high heating value for single and multi-component typical plastic wastes," Energy, Elsevier, vol. 156(C), pages 548-554.
    3. Vilaça, Mariana & Santos, Gonçalo & Oliveira, Mónica S.A. & Coelho, Margarida C. & Correia, Gonçalo H.A., 2022. "Life cycle assessment of shared and private use of automated and electric vehicles on interurban mobility," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    2. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    5. Gianluigi Farru & Judy A. Libra & Kyoung S. Ro & Carla Cannas & Claudio Cara & Aldo Muntoni & Martina Piredda & Giovanna Cappai, 2023. "Valorization of Face Masks Produced during COVID-19 Pandemic through Hydrothermal Carbonization (HTC): A Preliminary Study," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    6. Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
    7. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2024. "Analyzing the influence of feedstock selection in pyrolysis on aviation gas turbine engines: A study on performance, combustion efficiency, and emission profiles," Energy, Elsevier, vol. 306(C).
    8. Yusuke Kishita & Yohei Yamaguchi & Yuji Mizuno & Shinichi Fukushige & Yasushi Umeda & Yoshiyuki Shimoda, 2024. "Scenario Analysis of Electricity Demand in the Residential Sector Based on the Diffusion of Energy-Efficient and Energy-Generating Products," Sustainability, MDPI, vol. 16(15), pages 1-15, July.
    9. Huang, Weijia & Zheng, Danxing & Chen, Xiaohui & Shi, Lin & Dai, Xiaoye & Chen, Youhui & Jing, Xuye, 2020. "Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels," Renewable Energy, Elsevier, vol. 147(P1), pages 2160-2170.
    10. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
    11. Wang, Shunchao & Song, Zhanguo, 2024. "Exploring the behavioral stage transition of traveler's adoption of carsharing: An integrated choice and latent variable model," Journal of choice modelling, Elsevier, vol. 51(C).
    12. Yixiao Liu & Wenshan Liu & Rui Zhao & Lixin Tian, 2023. "Can Docked Bike-Sharing Systems Reach Their Dual Sustainability in Terms of Environmental Benefits and Financial Operations? A Comparative Study from Nanjing, 2017 and 2023," Sustainability, MDPI, vol. 15(24), pages 1-39, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2086-:d:1602082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.