IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6435-d1444276.html
   My bibliography  Save this article

Scenario Analysis of Electricity Demand in the Residential Sector Based on the Diffusion of Energy-Efficient and Energy-Generating Products

Author

Listed:
  • Yusuke Kishita

    (School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan)

  • Yohei Yamaguchi

    (Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan)

  • Yuji Mizuno

    (The Institute of Applied Energy, Tokyo 105-0003, Japan)

  • Shinichi Fukushige

    (School of Creative Science and Engineering, Waseda University, Tokyo 169-8555, Japan)

  • Yasushi Umeda

    (School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan)

  • Yoshiyuki Shimoda

    (Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan)

Abstract

A variety of energy-efficient and energy-generating products, such as photovoltaics (PV) and electric vehicles, have diffused into the market to reduce greenhouse gas emissions in the residential sector. Understanding future changes in electricity demand and supply is complicated by uncertainties such as lifestyle shifts and national energy policies, and how such changes interact with the diffusion of products. To address this issue, this study adopts a scenario approach to analyze the impact of product diffusion on residential electricity demand under different social circumstances. Two simulation models are employed for the analysis: (i) a model for estimating the diffusion of products based on consumer preferences and (ii) a model to estimate electricity demand in residential sectors considering product diffusion. To demonstrate the proposed method, a scenario analysis case study was conducted, estimating the electricity demand in the residential sector of Toyonaka City, Osaka, Japan, for 2030. The results show that compared to 2012, the net electricity demand in the city in 2030 is projected to decrease by 20–39% depending on the scenarios considered, with changes in demographics and PV diffusion identified as among the most critical factors.

Suggested Citation

  • Yusuke Kishita & Yohei Yamaguchi & Yuji Mizuno & Shinichi Fukushige & Yasushi Umeda & Yoshiyuki Shimoda, 2024. "Scenario Analysis of Electricity Demand in the Residential Sector Based on the Diffusion of Energy-Efficient and Energy-Generating Products," Sustainability, MDPI, vol. 16(15), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6435-:d:1444276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6435/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6435/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartusch, Cajsa & Alvehag, Karin, 2014. "Further exploring the potential of residential demand response programs in electricity distribution," Applied Energy, Elsevier, vol. 125(C), pages 39-59.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    4. Sun, Chuyu & Zhao, Xiaoli & Qi, Binbin & Xiao, Weihao & Zhang, Hongjun, 2022. "Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale," Applied Energy, Elsevier, vol. 328(C).
    5. Yu, Zhenyu & Lu, Fei & Zou, Yu & Yang, Xudong, 2022. "Quantifying the real-time energy flexibility of commuter plug-in electric vehicles in an office building considering photovoltaic and load uncertainty," Applied Energy, Elsevier, vol. 321(C).
    6. Yusuke Kishita & Takuma Masuda & Hidenori Nakamura & Kazumasu Aoki, 2023. "Computer‐aided scenario design using participatory backcasting: A case study of sustainable vision creation in a Japanese city," Futures & Foresight Science, John Wiley & Sons, vol. 5(1), March.
    7. Vilaça, Mariana & Santos, Gonçalo & Oliveira, Mónica S.A. & Coelho, Margarida C. & Correia, Gonçalo H.A., 2022. "Life cycle assessment of shared and private use of automated and electric vehicles on interurban mobility," Applied Energy, Elsevier, vol. 310(C).
    8. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingyue Li & Hongjun Li & Rui Miao & He Qi & Yi Zhang, 2023. "Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    2. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
    3. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    4. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    5. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    6. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    7. Simon P. Anderson & André de Palma, 2012. "Competition for attention in the Information (overload) Age," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 1-25, March.
    8. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Ma, Peng, 2021. "Optimal generic and brand advertising efforts in a decentralized supply chain considering customer surplus," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    10. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    11. Klingler, Anna-Lena & Luthander, Rasmus, 2018. "Market diffusion of residential PV and battery systems driven by self-consumption: A comparison of Sweden and Germany," Working Papers "Sustainability and Innovation" S18/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Robertson, Alastair & Soopramanien, Didier & Fildes, Robert, 2007. "A segment-based analysis of Internet service adoption among UK households," Technology in Society, Elsevier, vol. 29(3), pages 339-350.
    13. Edgardo Arturo Ayala Gaytán, 2009. "Social network externalities and price dispersion in online markets," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 1-28, November.
    14. Liberali, Guilherme & Gruca, Thomas S. & Nique, Walter M., 2011. "The effects of sensitization and habituation in durable goods markets," European Journal of Operational Research, Elsevier, vol. 212(2), pages 398-410, July.
    15. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    16. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    17. Chul-Yong Lee & Jongsu Lee, 2009. "Demand Forecasting in the Early Stage of the Technology's Life Cycle Using Bayesian update," TEMEP Discussion Papers 200903, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Apr 2009.
    18. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    19. Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.
    20. Jakob Grazzini & Matteo G. Richiardi & Lisa Sella, 2013. "Analysis of Agent-based Models," LABORatorio R. Revelli Working Papers Series 135, LABORatorio R. Revelli, Centre for Employment Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6435-:d:1444276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.