IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02883164.html
   My bibliography  Save this paper

Climate-driven risks to the climate mitigation potential of forests

Author

Listed:
  • William R.L. Anderegg

    (University of Utah)

  • Anna T. Trugman

    (UC Santa Barbara - University of California [Santa Barbara] - UC - University of California)

  • Grayson Badgley

    (University of Utah)

  • Christa M. Anderson

    (World Wildlife Fund, Washington)

  • Ann M. Bartuska

    (RESOURCES FOR THE FUTURE WASHINGTON DC USA - Partenaires IRSTEA - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture)

  • Philippe Ciais

    (LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines - INSU - CNRS - Institut national des sciences de l'Univers - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - DRF (CEA) - Direction de Recherche Fondamentale (CEA) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives, ICOS-ATC - ICOS-ATC - LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines - INSU - CNRS - Institut national des sciences de l'Univers - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - DRF (CEA) - Direction de Recherche Fondamentale (CEA) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives)

  • Danny Cullenward
  • Christopher B. Field

    (Stanford University)

  • Jeremy Freeman
  • Scott J. Goetz

    (SICCS - School of Informatics, Computing, and Cyber Systems - Northern Arizona University [Flagstaff])

  • Jeffrey A. Hicke

    (DEPARTMENT OF GEOGRAPHY UNIVERSITY OF IDAHO MOSCOW IDAHO USA - Partenaires IRSTEA - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture)

  • Deborah Nicole Huntzinger

    (Stanford University)

  • Robert B. Jackson

    (Stanford University)

  • John Nickerson
  • Stephen W. Pacala

    (Princeton University)

  • James T. Randerson

    (DEPARTMENT OF EARTH SYSTEM SCIENCES UNIVERSITY OF CALIFORNIA IRVINE CA USA - Partenaires IRSTEA - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture)

Abstract

Forests have considerable potential to help mitigate human-caused climate change and provide society with many cobenefits. However, climate-driven risks may fundamentally compromise forest carbon sinks in the 21st century. Here, we synthesize the current understanding of climate-driven risks to forest stability from fire, drought, biotic agents, and other disturbances. We review how efforts to use forests as natural climate solutions presently consider and could more fully embrace current scientific knowledge to account for these climate-driven risks. Recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing are improving current estimates and forecasts of the risks to forest stability. A more holistic understanding and quantification of such risks will help policy-makers and other stakeholders effectively use forests as natural climate solutions. Copyright

Suggested Citation

  • William R.L. Anderegg & Anna T. Trugman & Grayson Badgley & Christa M. Anderson & Ann M. Bartuska & Philippe Ciais & Danny Cullenward & Christopher B. Field & Jeremy Freeman & Scott J. Goetz & Jeffrey, 2020. "Climate-driven risks to the climate mitigation potential of forests," Post-Print hal-02883164, HAL.
  • Handle: RePEc:hal:journl:hal-02883164
    DOI: 10.1126/science.aaz7005
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Wei & Jiayue Yang & Ziqiang Liu & Jiaen Zhang, 2022. "Data Integration Analysis Indicates That Soil Texture and pH Greatly Influence the Acid Buffering Capacity of Global Surface Soils," Sustainability, MDPI, vol. 14(5), pages 1-11, March.
    2. Zbigniew W. Kundzewicz & Janusz Olejnik & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Storing Carbon in Forest Biomass and Wood Products in Poland—Energy and Climate Perspective," Energies, MDPI, vol. 16(15), pages 1-18, August.
    3. Gren, Ing-Marie, 2024. "A trading market for uncertain carbon removal by land use in the EU," Forest Policy and Economics, Elsevier, vol. 159(C).
    4. Guido Masiello & Francesco Ripullone & Italia De Feis & Angelo Rita & Luigi Saulino & Pamela Pasquariello & Angela Cersosimo & Sara Venafra & Carmine Serio, 2022. "The IASI Water Deficit Index to Monitor Vegetation Stress and Early Drying in Summer Heatwaves: An Application to Southern Italy," Land, MDPI, vol. 11(8), pages 1-18, August.
    5. Xiaojuan Xu & Fusheng Jiao & Dayi Lin & Jing Liu & Kun Zhang & Ruozhu Yang & Naifeng Lin & Changxin Zou, 2023. "Carbon Sink Trends in the Karst Regions of Southwest China: Impacts of Ecological Restoration and Climate Change," Land, MDPI, vol. 12(10), pages 1-16, October.
    6. M.J. Mace & Claire L. Fyson & Michiel Schaeffer & William L. Hare, 2021. "Large‐Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 67-81, April.
    7. Qingzhi He & Mao Ye & Xin Zhao & Xiaoting Pan, 2023. "Environmental Factors’ Effects on Stem Radial Variations of Populus euphratica in the Lower Reaches of the Tarim River in Northwestern China," Sustainability, MDPI, vol. 15(15), pages 1-14, July.
    8. Patrick Moriarty & Damon Honnery, 2020. "New Approaches for Ecological and Social Sustainability in a Post-Pandemic World," World, MDPI, vol. 1(3), pages 1-14, October.
    9. Sarah M. Anderson & Linda S. Heath & Marla R. Emery & Jeffrey A. Hicke & Jeremy S. Littell & Alan Lucier & Jeffrey G. Masek & David L. Peterson & Richard Pouyat & Kevin M. Potter & Guy Robertson & Jin, 2021. "Developing a set of indicators to identify, monitor, and track impacts and change in forests of the United States," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    10. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Andrea Duane & Marc Castellnou & Lluís Brotons, 2021. "Towards a comprehensive look at global drivers of novel extreme wildfire events," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    12. Callesen, I. & Magnussen, A., 2021. "TransparC2U–A two-pool, pedology oriented forest soil carbon simulation model aimed at user investigations of multiple uncertainties," Ecological Modelling, Elsevier, vol. 453(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02883164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.