IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6928-d921482.html
   My bibliography  Save this article

Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology

Author

Listed:
  • Renata Toczyłowska-Mamińska

    (Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences—WULS, 159 Nowoursynowska St., 02-776 Warsaw, Poland)

  • Mariusz Ł. Mamiński

    (Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—WULS, 159 Nowoursynowska St., 02-776 Warsaw, Poland)

Abstract

An underappreciated source of renewable energy is wastewater, both municipal and industrial, with global production exceeding 900 km 3 a year. Wastewater is currently perceived as a waste that needs to be treated via energy-consuming processes. However, in the current environmental nexus, traditional wastewater treatment uses 1700–5100 TWh of energy on a global scale. The application of modern and innovative treatment techniques, such as microbial fuel cells (MFC), would allow the conversion of wastewater’s chemical energy into electricity without external energy input. It has been demonstrated that the chemically bound energy in globally produced wastewater exceeds 2.5 × 10 4 TWh, which is sufficient to meet Europe’s annual energy demand. The aim of this paper is to answer the following questions. How much energy is bound in municipal and industrial wastewaters? How much of that energy can be extracted? What benefits will result from alternative techniques of waste treatment? The main finding of this report is that currently achieved energy recovery efficiencies with the use of microbial fuel cells technology can save about 20% of the chemical energy bound in wastewater, which is 5000 TWh on a global scale. The recovery of energy from wastewater via MFC technology can reach as much as 15% of global energy demands.

Suggested Citation

  • Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6928-:d:921482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    2. James Mitchell Crow, 2021. "The greener route to indigo blue," Nature, Nature, vol. 599(7885), pages 524-524, November.
    3. Mohammad Peydayesh & Raffaele Mezzenga, 2021. "Protein nanofibrils for next generation sustainable water purification," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Bruce Logan, 2008. "Microbial fuels for the future," Nature, Nature, vol. 454(7207), pages 943-944, August.
    5. Kataki, S. & Chatterjee, S. & Vairale, M.G. & Sharma, S. & Dwivedi, S.K. & Gupta, D.K., 2021. "Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Monika Kloch & Renata Toczyłowska-Mamińska, 2020. "Toward Optimization of Wood Industry Wastewater Treatment in Microbial Fuel Cells—Mixed Wastewaters Approach," Energies, MDPI, vol. 13(1), pages 1-10, January.
    7. Gemma Reguera & Kevin D. McCarthy & Teena Mehta & Julie S. Nicoll & Mark T. Tuominen & Derek R. Lovley, 2005. "Extracellular electron transfer via microbial nanowires," Nature, Nature, vol. 435(7045), pages 1098-1101, June.
    8. AlSayed, Ahmed & Soliman, Moomen & Eldyasti, Ahmed, 2020. "Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Edward Humes, 2019. "Planet junk: a journey through discards," Nature, Nature, vol. 575(7782), pages 278-279, November.
    12. Hamidi Abdul Aziz & Nur Nasuha Ahmad Puat & Motasem Y. D. Alazaiza & Yung-Tse Hung, 2018. "Poultry Slaughterhouse Wastewater Treatment Using Submerged Fibers in an Attached Growth Sequential Batch Reactor," IJERPH, MDPI, vol. 15(8), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamali, Mohammadreza & Guo, Yutong & Aminabhavi, Tejraj M. & Abbassi, Rouzbeh & Dewil, Raf & Appels, Lise, 2023. "Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Omar Alagha & Ahmed Allazem & Alaadin A. Bukhari & Ismail Anil & Nuhu Dalhat Mu'azu, 2020. "Suitability of SBR for Wastewater Treatment and Reuse: Pilot-Scale Reactor Operated in Different Anoxic Conditions," IJERPH, MDPI, vol. 17(5), pages 1-13, March.
    3. Yuming Wang & Yi Li & Longfei Wang & Wenlong Zhang & Thomas Bürgi, 2023. "Bio-Coated Graphitic Carbon Nitrides for Enhanced Nitrobenzene Degradation: Roles of Extracellular Electron Transfer," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    4. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    5. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    6. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    7. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Juan Manuel Madrid-Solórzano & Jorge Luis García-Alcaraz & Eduardo Martínez Cámara & Julio Blanco Fernández & Emilio Jiménez Macías, 2022. "Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    9. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Liu, Yuanzhe & Lai, Yen-Jung Sean & Rittmann, Bruce E., 2020. "Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 374-379.
    11. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    12. Renata Toczyłowska-Mamińska, 2020. "Wood-Based Panel Industry Wastewater Meets Microbial Fuel Cell Technology," IJERPH, MDPI, vol. 17(7), pages 1-8, March.
    13. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    14. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    15. Alejandro Aristi Capetillo & Fredric Bauer & Cristina Chaminade, 2023. "Emerging Technologies Supporting the Transition to a Circular Economy in the Plastic Materials Value Chain," Circular Economy and Sustainability, Springer, vol. 3(2), pages 953-982, June.
    16. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    17. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    18. Xianshu Liu & Jie Ding & Nanqi Ren & Qingyue Tong & Luyan Zhang, 2016. "The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    19. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    20. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6928-:d:921482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.