IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p878-d1573623.html
   My bibliography  Save this article

Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation

Author

Listed:
  • Rafał Misa

    (Strata Mechanics Research Institute, Polish Academy of Sciences, 30-059 Krakow, Poland)

  • Anton Sroka

    (Strata Mechanics Research Institute, Polish Academy of Sciences, 30-059 Krakow, Poland)

  • Dawid Mrocheń

    (Strata Mechanics Research Institute, Polish Academy of Sciences, 30-059 Krakow, Poland)

Abstract

While the cessation of underground mining operations reduces immediate risks to surface structures, it does not fully eliminate long-term surface hazards, which can hinder the sustainable development of post-mining communities. This study presents a combination of analytical and practical methods to quantitatively assess these persistent hazards, focusing on three critical areas: the risk of surface instability from discontinuous phenomena at shallow road headings, the progression of subsidence after mining has ceased, and surface uplift due to rising mine water levels. By providing practical examples, this research highlights the importance of ongoing monitoring and hazard assessment to support sustainable land use in former mining regions. These findings contribute to a broader understanding of post-mining environmental impacts, offering valuable insights into mitigating surface risks that can influence local sustainability efforts. This study supports the global drive toward sustainable development by addressing the long-term effects of resource extraction on land stability and community resilience.

Suggested Citation

  • Rafał Misa & Anton Sroka & Dawid Mrocheń, 2025. "Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation," Sustainability, MDPI, vol. 17(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:878-:d:1573623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oleg Bazaluk & Ivan Sadovenko & Alina Zahrytsenko & Pavlo Saik & Vasyl Lozynskyi & Roman Dychkovskyi, 2021. "Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field. Case Study," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    2. Maomao Zhang & Abdulla-Al Kafy & Bing Ren & Yanwei Zhang & Shukui Tan & Jianxing Li, 2022. "Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China," Land, MDPI, vol. 11(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    2. Wen Chen & Jinjie Wang & Jianli Ding & Xiangyu Ge & Lijing Han & Shaofeng Qin, 2023. "Detecting Long-Term Series Eco-Environmental Quality Changes and Driving Factors Using the Remote Sensing Ecological Index with Salinity Adaptability (RSEI SI ): A Case Study in the Tarim River Basin,," Land, MDPI, vol. 12(7), pages 1-23, June.
    3. Zhongyun Ni & Yinbing Zhao & Jingjing Liu & Yongjun Li & Xiaojiang Xia & Yang Zhang, 2024. "Navigating Ecological–Economic Interactions: Spatiotemporal Dynamics and Drivers in the Lower Reaches of the Jinsha River," Land, MDPI, vol. 13(12), pages 1-59, December.
    4. Oleg Bazaluk & Oleh Anisimov & Pavlo Saik & Vasyl Lozynskyi & Oleksandr Akimov & Leonid Hrytsenko, 2023. "Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    5. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    6. Jinlong Zhang & Yuan Qi & Rui Yang & Xiaofang Ma & Juan Zhang & Wanqiang Qi & Qianhong Guo & Hongwei Wang, 2023. "Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of Vegetation in the Qinghai Lake Basin," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    7. Mengba Liu & Yanfei Xiong & Anlu Zhang, 2024. "Can China’s Cross-Regional Ecological Fiscal Transfers Help Improve the Ecological Environment?—Evidence from Hubei Province," Land, MDPI, vol. 13(8), pages 1-23, July.
    8. Weiwei Zhang & Wanqian Zhang & Jianwan Ji & Chao Chen, 2024. "Urban Ecological Quality Assessment Based on Google Earth Engine and Driving Factors Analysis: A Case Study of Wuhan City, China," Sustainability, MDPI, vol. 16(9), pages 1-23, April.
    9. Shanshan Wang & Qiting Zuo & Kefa Zhou & Jinlin Wang & Wei Wang, 2023. "Predictions of Land Use/Land Cover Change and Landscape Pattern Analysis in the Lower Reaches of the Tarim River, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    10. Qin Wang & Qin Ju & Yueyang Wang & Quanxi Shao & Rongrong Zhang & Yanli Liu & Zhenchun Hao, 2022. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    11. Bo Liu & Wei Song & Zhan Meng & Xinwei Liu, 2023. "Review of Land Use Change Detection—A Method Combining Machine Learning and Bibliometric Analysis," Land, MDPI, vol. 12(5), pages 1-26, May.
    12. Yating Zhao & Chunming Hu & Xi Dong & Jun Li, 2023. "NDVI Characteristics and Influencing Factors of Typical Ecosystems in the Semi-Arid Region of Northern China: A Case Study of the Hulunbuir Grassland," Land, MDPI, vol. 12(3), pages 1-21, March.
    13. Lu Zhang & Xuehan Lin & Bingkui Qiu & Maomao Zhang & Qingsong He, 2022. "The Industrial Sprawl in China from 2010 to 2019: A Multi-Level Spatial Analysis Based on Urban Scaling Law," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    14. Yazhou Zhao & Shengyu Li & Dazhi Yang & Jiaqiang Lei & Jinglong Fan, 2023. "Spatiotemporal Changes and Driving Force Analysis of Land Sensitivity to Desertification in Xinjiang Based on GEE," Land, MDPI, vol. 12(4), pages 1-20, April.
    15. Enjun Gong & Fangxin Shi & Zhihui Wang & Qingfeng Hu & Jing Zhang & Hongxin Hai, 2022. "Evaluating Environmental Quality and Its Driving Force in Northeastern China Using the Remote Sensing Ecological Index," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    16. Chaoran Gao & Jinxin Wang & Manman Wang & Yan Zhang, 2023. "Simulating Urban Agglomeration Expansion in Henan Province, China: An Analysis of Driving Mechanisms Using the FLUS Model with Considerations for Urban Interactions and Ecological Constraints," Land, MDPI, vol. 12(6), pages 1-23, June.
    17. Gulbakram Ahmed & Mei Zan & Pariha Helili & Alimujiang Kasimu, 2023. "Responses of Vegetation Phenology to Urbanisation and Natural Factors along an Urban-Rural Gradient: A Case Study of an Urban Agglomeration on the Northern Slope of the Tianshan Mountains," Land, MDPI, vol. 12(5), pages 1-18, May.
    18. Zhenbao Wang & Shihao Li & Jiarui Song & Shuyue Liu & Dong Liu & Jianlin Jia, 2024. "Contribution of built environment factors and their interactions with subway station ridership," Public Transport, Springer, vol. 16(3), pages 929-965, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:878-:d:1573623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.