IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1303-d886768.html
   My bibliography  Save this article

Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China

Author

Listed:
  • Maomao Zhang

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430079, China
    These authors contributed equally to this work.)

  • Abdulla-Al Kafy

    (Department of Geography & the Environment, The University of Texas at Austin, Austin, TX 78712, USA)

  • Bing Ren

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430079, China)

  • Yanwei Zhang

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430079, China)

  • Shukui Tan

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430079, China)

  • Jianxing Li

    (School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430079, China
    These authors contributed equally to this work.)

Abstract

The ecological environment is important for the survival and development of human beings, and objective and accurate monitoring of changes in the ecological environment has received extensive attention. Based on the normalized difference vegetation index (NDVI), wetness (WET), normalized differential build-up and bare soil index (NDBSI), and land surface temperature (LST), the principal component analysis method is used to construct a comprehensive index to evaluate the ecological environment’s quality. The R package “Relainpo” is used to estimate the relative importance and contribution rate of NDVI, WET, NDBSI, and LST to the remote sensing ecological index (RSEI). The optimal parameter geographic detector (OPGD) model is used to quantitatively analyze the influencing factors, degree of influence, and interaction of the RSEI. The results show that from 2001 to 2020, the area with a poor grade quality of the RSEI in Guangzhou decreased from 719.2413 km 2 to 660.4146 km 2 , while the area with an excellent quality grade of the RSEI increased from 1778.8311 km 2 to 1978.9390 km 2 . The NDVI (40%) and WET (35%) contributed significantly to the RSEI, while LST and NDBSI contributed less to the RSEI. The results of single factor analysis revealed that soil type have the greatest impact on the RSEI with a coefficient (Q) of 0.1360, followed by a temperature with a coefficient (Q) of 0.1341. The interaction effect of two factors is greater than that of a single factor on the RSEI, and the interaction effect of different factors on the RSEI is significant, but the degree of influence is not consistent. This research may provide new clues for the stabilization and improvement of ecological environmental quality.

Suggested Citation

  • Maomao Zhang & Abdulla-Al Kafy & Bing Ren & Yanwei Zhang & Shukui Tan & Jianxing Li, 2022. "Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China," Land, MDPI, vol. 11(8), pages 1-20, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1303-:d:886768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongcai Dang & Hongshi He & Dandan Zhao & Michael Sunde & Haibo Du, 2020. "Quantifying the Relative Importance of Climate Change and Human Activities on Selected Wetland Ecosystems in China," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    2. Maomao Zhang & Weigang Chen & Kui Cai & Xin Gao & Xuesong Zhang & Jinxiang Liu & Zhiyuan Wang & Deshou Li, 2019. "Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China," IJERPH, MDPI, vol. 16(22), pages 1-22, November.
    3. Yonghua Zhao & Li Liu & Shuaizhi Kang & Yong Ao & Lei Han & Chaoqun Ma, 2021. "Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types," Land, MDPI, vol. 10(6), pages 1-17, June.
    4. Tian, Wei & Liu, Yunliang & Heo, Yeonsook & Yan, Da & Li, Zhanyong & An, Jingjing & Yang, Song, 2016. "Relative importance of factors influencing building energy in urban environment," Energy, Elsevier, vol. 111(C), pages 237-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinlong Zhang & Yuan Qi & Rui Yang & Xiaofang Ma & Juan Zhang & Wanqiang Qi & Qianhong Guo & Hongwei Wang, 2023. "Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of Vegetation in the Qinghai Lake Basin," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    2. Bo Liu & Wei Song & Zhan Meng & Xinwei Liu, 2023. "Review of Land Use Change Detection—A Method Combining Machine Learning and Bibliometric Analysis," Land, MDPI, vol. 12(5), pages 1-26, May.
    3. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    4. Gulbakram Ahmed & Mei Zan & Pariha Helili & Alimujiang Kasimu, 2023. "Responses of Vegetation Phenology to Urbanisation and Natural Factors along an Urban-Rural Gradient: A Case Study of an Urban Agglomeration on the Northern Slope of the Tianshan Mountains," Land, MDPI, vol. 12(5), pages 1-18, May.
    5. Enjun Gong & Fangxin Shi & Zhihui Wang & Qingfeng Hu & Jing Zhang & Hongxin Hai, 2022. "Evaluating Environmental Quality and Its Driving Force in Northeastern China Using the Remote Sensing Ecological Index," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    6. Chaoran Gao & Jinxin Wang & Manman Wang & Yan Zhang, 2023. "Simulating Urban Agglomeration Expansion in Henan Province, China: An Analysis of Driving Mechanisms Using the FLUS Model with Considerations for Urban Interactions and Ecological Constraints," Land, MDPI, vol. 12(6), pages 1-23, June.
    7. Yazhou Zhao & Shengyu Li & Dazhi Yang & Jiaqiang Lei & Jinglong Fan, 2023. "Spatiotemporal Changes and Driving Force Analysis of Land Sensitivity to Desertification in Xinjiang Based on GEE," Land, MDPI, vol. 12(4), pages 1-20, April.
    8. Wen Chen & Jinjie Wang & Jianli Ding & Xiangyu Ge & Lijing Han & Shaofeng Qin, 2023. "Detecting Long-Term Series Eco-Environmental Quality Changes and Driving Factors Using the Remote Sensing Ecological Index with Salinity Adaptability (RSEI SI ): A Case Study in the Tarim River Basin,," Land, MDPI, vol. 12(7), pages 1-23, June.
    9. Lu Zhang & Xuehan Lin & Bingkui Qiu & Maomao Zhang & Qingsong He, 2022. "The Industrial Sprawl in China from 2010 to 2019: A Multi-Level Spatial Analysis Based on Urban Scaling Law," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    10. Weiwei Zhang & Wanqian Zhang & Jianwan Ji & Chao Chen, 2024. "Urban Ecological Quality Assessment Based on Google Earth Engine and Driving Factors Analysis: A Case Study of Wuhan City, China," Sustainability, MDPI, vol. 16(9), pages 1-23, April.
    11. Qin Wang & Qin Ju & Yueyang Wang & Quanxi Shao & Rongrong Zhang & Yanli Liu & Zhenchun Hao, 2022. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    12. Mengba Liu & Yanfei Xiong & Anlu Zhang, 2024. "Can China’s Cross-Regional Ecological Fiscal Transfers Help Improve the Ecological Environment?—Evidence from Hubei Province," Land, MDPI, vol. 13(8), pages 1-23, July.
    13. Yating Zhao & Chunming Hu & Xi Dong & Jun Li, 2023. "NDVI Characteristics and Influencing Factors of Typical Ecosystems in the Semi-Arid Region of Northern China: A Case Study of the Hulunbuir Grassland," Land, MDPI, vol. 12(3), pages 1-21, March.
    14. Zhongyun Ni & Yinbing Zhao & Jingjing Liu & Yongjun Li & Xiaojiang Xia & Yang Zhang, 2024. "Navigating Ecological–Economic Interactions: Spatiotemporal Dynamics and Drivers in the Lower Reaches of the Jinsha River," Land, MDPI, vol. 13(12), pages 1-59, December.
    15. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    16. Shanshan Wang & Qiting Zuo & Kefa Zhou & Jinlin Wang & Wei Wang, 2023. "Predictions of Land Use/Land Cover Change and Landscape Pattern Analysis in the Lower Reaches of the Tarim River, China," Land, MDPI, vol. 12(5), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Yang & Xuan Zou & Xueqi Liu & Qixuan Li & Siqian Zou & Ming Li, 2023. "The Spatiotemporal Pattern and Driving Mechanism of Urban Sprawl in China’s Counties," Land, MDPI, vol. 12(3), pages 1-16, March.
    2. Jingya Tang & Lichun Sui, 2022. "Geodetector-Based Livability Analysis of Potential Resettlement Locations for Villages in Coal Mining Areas on the Loess Plateau of China," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    3. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Jorge Salas & Víctor Yepes, 2020. "Enhancing Sustainability and Resilience through Multi-Level Infrastructure Planning," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    6. Liudan Jiao & Bowei Han & Qilin Tan & Yu Zhang & Xiaosen Huo & Liu Wu & Ya Wu, 2024. "An Improved DPSIR-DEA Assessment Model for Urban Resilience: A Case Study of 105 Large Cities in China," Land, MDPI, vol. 13(8), pages 1-23, July.
    7. Zhiwei Wan & Hongqi Wu, 2022. "Evolution of Ecological Patterns of Poyang Lake Wetland Landscape over the Last One Hundred Years Based on Historical Topographic Maps and Landsat Images," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    8. Chao Yang & Jianrong Fan & Jiali Liu & Fubao Xu & Xiyu Zhang, 2021. "Evaluating the Dominant Controls of Water Erosion in Three Dry Valley Types Using the RUSLE and Geodetector Method," Land, MDPI, vol. 10(12), pages 1-16, November.
    9. Dongling Ma & Yuhan Li & Qingji Huang & Baoze Liu, 2023. "Analysis of Spatio-Temporal Evolution of Regional Settlements under the Background of Rapid Urbanization: A Case Study in Sishui County, China," Sustainability, MDPI, vol. 15(9), pages 1-29, April.
    10. Hui Xu & Yang Li & Lin Wang, 2020. "Resilience Assessment of Complex Urban Public Spaces," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    11. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    12. Mohammadi, Neda & Taylor, John E., 2017. "Urban infrastructure-mobility energy flux," Energy, Elsevier, vol. 140(P1), pages 716-728.
    13. Shubo Cheng & Haoying Li, 2024. "Resilience Assessment of Flood Disasters in Zhengzhou Metropolitan Area Based on the PSR Model," Sustainability, MDPI, vol. 16(23), pages 1-25, November.
    14. Jiang, Nana & Jiang, Wei & Wang, Yanfei & Zhang, Jinning, 2024. "Impact of financial reform on urban resilience: Evidence from the financial reform pilot zones in China," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    15. Shukui Tan & Maomao Zhang & Ao Wang & Qianlin Ni, 2021. "Spatio-Temporal Evolution and Driving Factors of Rural Settlements in Low Hilly Region—A Case Study of 17 Cities in Hubei Province, China," IJERPH, MDPI, vol. 18(5), pages 1-18, March.
    16. Yanning Si & Lizhi Liang & Wenguang Zhou, 2024. "An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    17. Zhang, Chenxi & Xu, Zeshui, 2024. "Gaining insights for service improvement through unstructured text from online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    18. Shixian Xu & Xinjun Wang & Xiaofei Ma & Shenghan Gao, 2023. "Risk Assessment and Prediction of Soil Water Erosion on the Middle Northern Slope of Tianshan Mountain," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    19. Xiaodan Wu & Ni Hong & Qingjing Cen & Jiaxin Lu & Hui Wan & Wei Liu & Hongli Zheng & Roger Ruan & Kirk Cobb & Yuhuan Liu, 2022. "Application of Phosphate Materials as Constructed Wetland Fillers for Efficient Removal of Heavy Metals from Wastewater," IJERPH, MDPI, vol. 19(9), pages 1-12, April.
    20. Jie Yang & Yanan Ding & Lin Zhang, 2022. "Conceptualizing and Measuring Megacity Resilience with an Integrated Approach: The Case of China," Sustainability, MDPI, vol. 14(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1303-:d:886768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.