IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p874-d1573563.html
   My bibliography  Save this article

Sustainable Food Security and Nutritional Challenges

Author

Listed:
  • Malik A. Hussain

    (School of Science, Western Sydney University, Richmond, NSW 2753, Australia)

  • Li Li

    (School of Science, Western Sydney University, Richmond, NSW 2753, Australia)

  • Arua Kalu

    (School of Science, Western Sydney University, Richmond, NSW 2753, Australia)

  • Xiyang Wu

    (Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China)

  • Nenad Naumovski

    (School of Rehabilitation and Exercise Sciences, Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia
    Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
    University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT 2601, Australia
    Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece)

Abstract

Food security is an immensely complex issue connected to global food production and supply systems. One of the key challenges is to provide sufficient, safe, and nutritionally balanced food for everyone on the planet. It is closely linked to many factors including population growth, poverty, economic stability, and environmental sustainability. Currently, the world population is growing at an unprecedented rate, placing immense pressure on food production systems. Thus, meeting the increasing demand for food presents a significant challenge for the current global agriculture and food systems. The World Food Program reported that over 345 million people faced high levels of food insecurity in 2023. Additionally, 2 billion people are living with micronutrient deficiencies (such as vitamin A, iron, and iodine). Over time, a severely restricted food intake can cause malnutrition and reduce the lifespan. On the other hand, nearly 2 billion adults worldwide are overweight or obese. Global emergencies such as the COVID-19 pandemic and war zones have complicated the situation and resulted in increased hunger, lower immunity, increased infectious disease, and increased rates of early mortality. Furthermore, climate changes are disrupting traditional growing seasons, increasing the frequency of extreme weather events, and posing a serious threat to crop yields. This scenario warrants adaptation of sustainable and resilient agriculture and food systems is crucial for improved and sustainable food security.

Suggested Citation

  • Malik A. Hussain & Li Li & Arua Kalu & Xiyang Wu & Nenad Naumovski, 2025. "Sustainable Food Security and Nutritional Challenges," Sustainability, MDPI, vol. 17(3), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:874-:d:1573563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Allee & Lee R. Lynd & Vikrant Vaze, 2021. "Cross-national analysis of food security drivers: comparing results based on the Food Insecurity Experience Scale and Global Food Security Index," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(5), pages 1245-1261, October.
    2. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    3. Juan García-Díez & Carla Gonçalves & Luca Grispoldi & Beniamino Cenci-Goga & Cristina Saraiva, 2021. "Determining Food Stability to Achieve Food Security," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    4. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    5. Thai H. Le & Marta Disegna & Tim Lloyd, 2023. "National Food Consumption Patterns: Converging Trends and the Implications for Health," EuroChoices, The Agricultural Economics Society, vol. 22(1), pages 66-73, April.
    6. Mona Haji & Frank Himpel, 2024. "Building Resilience in Food Security: Sustainable Strategies Post-COVID-19," Sustainability, MDPI, vol. 16(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marion Desquilbet & Bruno Dorin & Denis Couvet, 2016. "Land Sharing vs Land Sparing to Conserve Biodiversity: How Agricultural Markets Make the Difference [land-sharing/land-sparing, comment les marchés font la différence]," Post-Print hal-03948463, HAL.
    2. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    3. Goldstein, Benjamin & Hansen, Steffen Foss & Gjerris, Mickey & Laurent, Alexis & Birkved, Morten, 2016. "Ethical aspects of life cycle assessments of diets," Food Policy, Elsevier, vol. 59(C), pages 139-151.
    4. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    5. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    6. Rami Al Sidawi & Teo Urushadze & Angelika Ploeger, 2020. "Changes in Dairy Products Value Chain in Georgia," Sustainability, MDPI, vol. 12(15), pages 1-29, July.
    7. Ana Filipa Fonseca & Fabíola Polita & Lívia Madureira, 2024. "How Agroecological Transition Frameworks Are Reshaping Agroecology: A Review," Land, MDPI, vol. 13(11), pages 1-15, November.
    8. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    10. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    11. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    12. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    13. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    14. Adam A. Prag & Christian B. Henriksen, 2020. "Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse Gas Emissions from Agriculture—The Case of Denmark," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    15. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    16. Xavier Simon & Damián Copena & David Pérez-Neira, 2023. "Assessment of the diet-environment-health-cost quadrilemma in public school canteens. an LCA case study in Galicia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12543-12567, November.
    17. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    18. Seck, Abdoulaye & Thiam, Djiby Racine, 2022. "Understanding consumer attitudes to and valuation of organic food in Sub-Saharan Africa: A double-bound contingent method applied in Dakar, Senegal," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 17(01), March.
    19. Hanna Dudek & Joanna Myszkowska-Ryciak & Agnieszka Wojewódzka-Wiewiórska, 2021. "Profiles of Food Insecurity: Similarities and Differences across Selected CEE Countries," Energies, MDPI, vol. 14(16), pages 1-19, August.
    20. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:874-:d:1573563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.