IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1277-d1584065.html
   My bibliography  Save this article

Advancing Sustainable Energy: Environmental and Economic Assessment of Plastic Waste Gasification for Syngas and Electricity Generation Using Life Cycle Modeling

Author

Listed:
  • Muhammad Hassan Javed

    (Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan)

  • Anees Ahmad

    (Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan)

  • Mohammad Rehan

    (Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Farayi Musharavati

    (Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar)

  • Abdul-Sattar Nizami

    (Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
    Graduate School of Energy and Environment, Korea University, Seoul 02481, Republic of Korea)

  • Mohammad Ilyas Khan

    (Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

Abstract

The explosion of plastic waste generation, approaching 400 million tons per year, has created a worldwide environmental crisis that conventional waste management systems cannot handle. This problem can be solved through gasification, which converts nonrecyclable plastics to syngas with potential applications in electricity generation and synthetic fuel production. This study investigates whether syngas production from plastic waste by gasification is environmentally and economically feasible. Environmental impacts were assessed through a life cycle assessment framework using a life cycle impact assessment approach, ReCiPe 2016, with 10 midpoint/endpoint categories. Midpoint results of the baseline scenario with grid-mix electricity revealed climate change (GWP) of 775 kg CO 2 equivalent and fossil depletion potential (FDP) of 311 kg oil equivalent per ton of plastic waste. Meanwhile, a solar scenario showed GWP as 435 kg CO 2 equivalent and FDP as 166 kg oil equivalent per ton of plastic waste. Switching to solar energy cut GWP 44% and FDP 47%, respectively. However, the tradeoffs were higher human toxicity potential (HTP) and marine ecotoxicity potential (METP) due to upstream material extraction of renewable systems, respectively. Among environmental performance drivers, electricity inputs and operating materials were identified through sensitivity and uncertainty analyses. Syngas production from a plant of 50 tons per day can yield electricity sales revenue of USD 4.79 million, excluding USD 4.05 million in operational expenditures. Financial indicators like a 2.06-year payback period, USD 5.32 million net present value over a 20-year project life, and 38.2% internal rate of return indicate the profitability of the system. An external cost analysis showed emissions-related costs of USD 26.43 per ton of plastic waste processed, dominated by CO 2 and NO x emissions. Despite these costs, the avoided impacts of less landfilling/incineration and electricity generation support gasification. Gasification should be promoted as a subsidy and incentive by policymakers for wider adoption and integration into municipal waste management systems. Findings show it can be adapted to global sustainability goals and circular economy principles while delivering strong economic returns. The study findings also contribute to several Sustainable Development Goals (SDGs), for instance, SDG 7 by promoting clean energy technologies, SDG 12 by implementing circular economy, and SDG 13 by reducing greenhouse gas (GHG) emissions.

Suggested Citation

  • Muhammad Hassan Javed & Anees Ahmad & Mohammad Rehan & Farayi Musharavati & Abdul-Sattar Nizami & Mohammad Ilyas Khan, 2025. "Advancing Sustainable Energy: Environmental and Economic Assessment of Plastic Waste Gasification for Syngas and Electricity Generation Using Life Cycle Modeling," Sustainability, MDPI, vol. 17(3), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1277-:d:1584065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    2. Shampa Ghosh & Jitendra Kumar Sinha & Soumya Ghosh & Kshitij Vashisth & Sungsoo Han & Rakesh Bhaskar, 2023. "Microplastics as an Emerging Threat to the Global Environment and Human Health," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    3. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    4. Farayi Musharavati & Khadija Sajid & Izza Anwer & Abdul-Sattar Nizami & Muhammad Hassan Javed & Anees Ahmad & Muhammad Naqvi, 2023. "Advancing Biodiesel Production System from Mixed Vegetable Oil Waste: A Life Cycle Assessment of Environmental and Economic Outcomes," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
    5. Nizami, A.S. & Shahzad, K. & Rehan, M. & Ouda, O.K.M. & Khan, M.Z. & Ismail, I.M.I. & Almeelbi, T. & Basahi, J.M. & Demirbas, A., 2017. "Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy," Applied Energy, Elsevier, vol. 186(P2), pages 189-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    2. Kannan Badri Narayanan & Rakesh Bhaskar, 2024. "Green Nanotechnology: Paving the Way for Environmental Sustainability," Sustainability, MDPI, vol. 16(14), pages 1-4, July.
    3. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    5. Yunxin Peng & Adel A. Zadeh & Sheila M. Puffer, 2023. "Unearthing the Construction Industry’s Awareness of and Reactions to the Global Sand Crisis," Sustainability, MDPI, vol. 15(21), pages 1-17, November.
    6. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    7. Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jéssica Cristina Conte da Silva & Jorge Fernando Hungria Ferreira & Kelly Christina Alves Bezerra & Lucas Pinto Bernar & Caio Campos Ferreir, 2022. "A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical P," Energies, MDPI, vol. 15(21), pages 1-30, October.
    8. Mohammad Alaghemandi, 2024. "Sustainable Solutions Through Innovative Plastic Waste Recycling Technologies," Sustainability, MDPI, vol. 16(23), pages 1-37, November.
    9. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    10. Manasvi Jain & Arun Sharma, 2024. "Influence of Microplastics in Environmental Contamination and Human Health: An Analytical and Statistical Approach," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(12), pages 388-424, December.
    11. Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
    12. Gabriel Pereira Colares da Silva & Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jorge Fernando Hungria Ferreira & Josiane Coutinho Mathews & Débora Prissila Reis Sandim & Higor Ribeiro , 2024. "Analysis of the Gravimetric Composition of Urban Solid Waste from the Municipality of Belém/PA," Sustainability, MDPI, vol. 16(13), pages 1-17, June.
    13. Sayed, Enas Taha & Alami, Abdul Hai & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Kamarudin, Siti Kartom & Olabi, A.G., 2024. "Real direct urea fuel Fell operation using standalone Ni-based metal-organic framework prepared by ball mill at room temperature," Energy, Elsevier, vol. 305(C).
    14. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    15. Arranz-Piera, Pol & Kemausuor, Francis & Darkwah, Lawrence & Edjekumhene, Ishmael & Cortés, Joan & Velo, Enrique, 2018. "Mini-grid electricity service based on local agricultural residues: Feasibility study in rural Ghana," Energy, Elsevier, vol. 153(C), pages 443-454.
    16. Jan Macháč & Lenka Zaňková, 2020. "Renewables—To Build or Not? Czech Approach to Impact Assessment of Renewable Energy Sources with an Emphasis on Municipality Perspective," Land, MDPI, vol. 9(12), pages 1-15, December.
    17. Zhang, Huiming & Xu, Zhidong & Zhou, Dequn & Cao, Jie, 2017. "Waste cooking oil-to-energy under incomplete information: Identifying policy options through an evolutionary game," Applied Energy, Elsevier, vol. 185(P1), pages 547-555.
    18. Arshid M. Ali & Ayyaz M. Nawaz & Hamad A. Al-Turaif & Khurram Shahzad, 2021. "The economic and environmental analysis of energy production from slaughterhouse waste in Saudi Arabia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4252-4269, March.
    19. Gaydaa Al Zohbi & Fahad Gallab AlAmri, 2024. "Current Situation of Renewable Energy in Saudi Arabia: Opportunities and Challenges," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 13(2), pages 1-98, July.
    20. Juliana Araújo Pereira & Flávio José Simioni & Juliana Ferreira Soares & Jeane de Almeida do Rosário & Eduardo Bertol & Fabio Murilo Padilha Souza & Luiz Moreira Coelho Junior, 2024. "Circular Economy Practices in Biomass-Fired Power Plants in Brazil: An Assessment Using the ReSOLVE Framework," Sustainability, MDPI, vol. 16(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1277-:d:1584065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.