IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16550-d1294151.html
   My bibliography  Save this article

Advancing Biodiesel Production System from Mixed Vegetable Oil Waste: A Life Cycle Assessment of Environmental and Economic Outcomes

Author

Listed:
  • Farayi Musharavati

    (Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar)

  • Khadija Sajid

    (Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan)

  • Izza Anwer

    (Department of Transportation Engineering and Management, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Abdul-Sattar Nizami

    (Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan)

  • Muhammad Hassan Javed

    (Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan)

  • Anees Ahmad

    (Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan)

  • Muhammad Naqvi

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

Abstract

This study aims to evaluate the environmental and economic performance of biodiesel production from mixed vegetable oil waste using the life cycle assessment (LCA) model. Due to its huge potential, Pakistan is taken as a case study. It produces 468,842 tons of vegetable oil waste annually. As no biodiesel production plant exists to process it, the environmental performance of biodiesel prototypes has not been investigated. Therefore, the current study is conducted to support the design of a plant to produce biodiesel from mixed oil waste. An attributional LCA was conducted using ReCiPe (H) and found that 400 kg of biodiesel can be produced from 1 t of mixed oil waste. The results, based on a functional unit of 1 ton, showed that biodiesel production from mixed vegetable oil waste is more eco-friendly than the existing landfilling practices with a global warming potential of 1.36 × 10 −4 kg CO 2 eq, human toxicity of 5.31 kg 1.4 DB eq, ozone depletion potential of 0.00271 kg CFC-11 eq, eutrophication potential of 0.0118 kg P eq, acidification potential of 123 kg SO 2 eq, and photochemical ozone formation of 51.4 kg NO x eq. Scenario modelling was conducted using electricity from photovoltaic solar cells, which decrease fine particulate matter formation from 44.5 to 0.725 kg PM 2 . 5 eq, instead of using electricity from a grid to the plant. Hotspot identification was carried out to highlight the effects of individual impact categories. An economic analysis showed that 638,839 USD/year revenue would be generated. Generating energy from discarded vegetable oils through biodiesel production presents a sustainable and economically viable approach. This process benefits the environment and contributes to cost savings by reducing waste disposal in landfills. Furthermore, it aligns with the principles of a circular economy, in which resources are reused and recycled. It also supports the pursuit of the United Nations’ Sustainable Development Goals (SDGs), particularly SDG-7, which focuses on affordable and clean energy, and SDG-12, which emphasizes responsible consumption and production.

Suggested Citation

  • Farayi Musharavati & Khadija Sajid & Izza Anwer & Abdul-Sattar Nizami & Muhammad Hassan Javed & Anees Ahmad & Muhammad Naqvi, 2023. "Advancing Biodiesel Production System from Mixed Vegetable Oil Waste: A Life Cycle Assessment of Environmental and Economic Outcomes," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16550-:d:1294151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    2. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Syed Mithun Ali & Andrea Appolloni & Fausto Cavallaro & Idiano D’Adamo & Assunta Di Vaio & Francesco Ferella & Massimo Gastaldi & Muhammad Ikram & Nallapaneni Manoj Kumar & Michael Alan Martin & Abdul, 2023. "Development Goals towards Sustainability," Sustainability, MDPI, vol. 15(12), pages 1-11, June.
    4. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    5. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2016. "Process simulation and life cycle analysis of biodiesel production," Renewable Energy, Elsevier, vol. 85(C), pages 945-952.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    2. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    3. Krzysztof Wiśniewski & Gabriela Rutkowska & Katarzyna Jeleniewicz & Norbert Dąbkowski & Jarosław Wójt & Marek Chalecki & Tomasz Wierzbicki, 2024. "Ecologically Friendly Building Materials: A Case Study of Clay–Ash Composites for the Efficient Management of Fly Ash from the Thermal Conversion of Sewage Sludge," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    4. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    5. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    6. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    7. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2017. "Integration of interpretive structural modelling with Bayesian network for biodiesel performance analysis," Renewable Energy, Elsevier, vol. 107(C), pages 194-203.
    8. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Odeh Al-Jayyousi & Hira Amin & Hiba Ali Al-Saudi & Amjaad Aljassas & Evren Tok, 2023. "Mission-Oriented Innovation Policy for Sustainable Development: A Systematic Literature Review," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    10. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    11. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    12. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    13. Galatioto, A. & Ricciu, R. & Salem, T. & Kinab, E., 2019. "Energy and economic analysis on retrofit actions for Italian public historic buildings," Energy, Elsevier, vol. 176(C), pages 58-66.
    14. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    15. Raquel Francisco Mafra & Jacir Leonir Casagrande & Ana Regina de Aguiar Dutra & Nei Antonio Nunes & Felipe Texeira Dias & Samuel Borges Barbosa & José Baltazar Salgueirinho Osório de Andrade Guerra, 2024. "Social Innovation as a Support for the Visibility of Vulnerable Communities," Sustainability, MDPI, vol. 16(11), pages 1-22, May.
    16. Javier Uche & Amaya Martínez-Gracia & Ignacio Zabalza & Sergio Usón, 2024. "Renewable Energy Source (RES)-Based Polygeneration Systems for Multi-Family Houses," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    17. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    19. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    20. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16550-:d:1294151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.