IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p106-d1554245.html
   My bibliography  Save this article

Simplified Multi-Hazard Assessment to Foster Resilience for Sustainable Energy Infrastructure on Santa Cruz Island, Galapagos

Author

Listed:
  • Ana Gabriela Haro-Baez

    (Departamento de Ciencias de la Tierra y la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador
    Research Group of Structures and Constructions (GIEC), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador)

  • Eduardo Posso

    (Departamento de Ciencias de la Tierra y la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador
    Research Group of Structures and Constructions (GIEC), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador)

  • Santiago Rojas

    (Departamento de Ciencias de la Tierra y la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador
    Research Group of Structures and Constructions (GIEC), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador)

  • Diego Arcos-Aviles

    (Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador
    Research Group of Propagation, Electronic Control, and Networking (PROCONET), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador)

Abstract

This study analyzes the clean energy infrastructure resilience on Santa Cruz Island, located in the Galapagos archipelago, facing identified multi-natural hazard scenarios such as earthquakes, tsunamis, volcanic eruptions, and extreme weather events. Although Santa Cruz Island has a relatively modern energy infrastructure, its geographic location and lack of clear emergency management actions would significantly affect its performance. Risk assessment components, such as exposure and vulnerability, are also analyzed, highlighting the need for strategic interventions to ensure the continuity of energy supply and other essential services. Proved methodologies are used to propose action plans, including structural and non-structural solutions and simulations based on disaster scenarios. As a result, a series of strategies are revealed to strengthen the response and adaptation capacity of both critical infrastructure and the local community. These strategies hold the potential to ensure the island’s long-term energy security and sustainability, reducing its carbon footprint and instilling hope for a resilient future.

Suggested Citation

  • Ana Gabriela Haro-Baez & Eduardo Posso & Santiago Rojas & Diego Arcos-Aviles, 2024. "Simplified Multi-Hazard Assessment to Foster Resilience for Sustainable Energy Infrastructure on Santa Cruz Island, Galapagos," Sustainability, MDPI, vol. 17(1), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:106-:d:1554245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Gabriela Haro-Baez & Diego Chavez & Cristina Camino & Diego Arcos-Aviles, 2023. "Seismic and Tsunami Risk Analysis for Installing Resilient Power Systems Based on Isolated Microgrids on Buildings: The Case of Puerto Ayora in Santa Cruz Island, Galapagos," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    2. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Federico Antonello & Piero Baraldi & Enrico Zio & Luigi Serio, 2022. "A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures," Environment Systems and Decisions, Springer, vol. 42(3), pages 436-449, September.
    3. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    5. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    6. Luciano Cavalcante Siebert & Alexandre Rasi Aoki & Germano Lambert-Torres & Nelson Lambert-de-Andrade & Nikolaos G. Paterakis, 2020. "An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System," Energies, MDPI, vol. 13(18), pages 1-13, September.
    7. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    8. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Mohamed Gaha & Bilal Chabane & Dragan Komljenovic & Alain Côté & Claude Hébert & Olivier Blancke & Atieh Delavari & Georges Abdul-Nour, 2021. "Global Methodology for Electrical Utilities Maintenance Assessment Based on Risk-Informed Decision Making," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    10. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    11. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    12. Kefan Xie & Zimei Liu, 2019. "Factors Influencing Escalator-Related Incidents in China: A Systematic Analysis Using ISM-DEMATEL Method," IJERPH, MDPI, vol. 16(14), pages 1-15, July.
    13. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    14. Wehrle, Rebecca & Wiens, Marcus & Schultmann, Frank, 2024. "Evaluation of the potential of infrastructure funds: The case of inland waterways in Germany," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    15. Mishra, Vishrut Kumar & Palleti, Venkata Reddy & Mathur, Aditya, 2019. "A modeling framework for critical infrastructure and its application in detecting cyber-attacks on a water distribution system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    16. Alkhaleel, Basem A., 2024. "Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    17. Ivo Häring & Mirjam Fehling-Kaschek & Natalie Miller & Katja Faist & Sebastian Ganter & Kushal Srivastava & Aishvarya Kumar Jain & Georg Fischer & Kai Fischer & Jörg Finger & Alexander Stolz & Tobias , 2021. "A performance-based tabular approach for joint systematic improvement of risk control and resilience applied to telecommunication grid, gas network, and ultrasound localization system," Environment Systems and Decisions, Springer, vol. 41(2), pages 286-329, June.
    18. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    20. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:106-:d:1554245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.