IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3328-d1376597.html
   My bibliography  Save this article

Towards Sustainable Material: Optimizing Geopolymer Mortar Formulations for 3D Printing: A Life Cycle Assessment Approach

Author

Listed:
  • Charlotte Roux

    (MINES Paris—PSL Research University, CEEP (Centre Energie Environnement Procédés), 60 Boulevard Saint Michel, 75006 Paris, France)

  • Julien Archez

    (Navier Laboratory, Ecole des Ponts ParisTech, Gustave Eiffel University CNRS, 77454 Champs sur Marne, France)

  • Corentin Le Gall

    (Navier Laboratory, Ecole des Ponts ParisTech, Gustave Eiffel University CNRS, 77454 Champs sur Marne, France)

  • Myriam Saadé

    (Navier Laboratory, Ecole des Ponts ParisTech, Gustave Eiffel University CNRS, 77454 Champs sur Marne, France)

  • Adélaïde Féraille

    (Navier Laboratory, Ecole des Ponts ParisTech, Gustave Eiffel University CNRS, 77454 Champs sur Marne, France)

  • Jean-François Caron

    (Navier Laboratory, Ecole des Ponts ParisTech, Gustave Eiffel University CNRS, 77454 Champs sur Marne, France)

Abstract

Geopolymer-based concretes have been elaborated among others for their potential to lower the environmental impact of the construction sector. The rheology and workability of fresh geopolymers make them suitable for new applications such as 3D printing. In this paper, we aim to develop a potassium silicate- and metakaolin-based geopolymer mortar with sand and local earth additions suited for 3D printing and an environmental assessment framework for this material. The methodology aims at the optimization of both the granular skeleton and the geopolymer matrix for the development of a low-environmental-impact material suited for 3D printing. Using this approach, various metakaolin/earth geopolymer mortars are explored from a mechanical and environmental point of view. The environmental assessment of the lab-scale process shows an improvement for the climate change category but a degradation of other indicators, compared to Portland-cement-based concrete. Several promising options exist to further optimize the process and decrease its environmental impacts. This constitutes the main research perspective of this work.

Suggested Citation

  • Charlotte Roux & Julien Archez & Corentin Le Gall & Myriam Saadé & Adélaïde Féraille & Jean-François Caron, 2024. "Towards Sustainable Material: Optimizing Geopolymer Mortar Formulations for 3D Printing: A Life Cycle Assessment Approach," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3328-:d:1376597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas Hedberg & Kristin Fransson & Sonja Prideaux & Sandra Roos & Christina Jönsson & Inger Odnevall Wallinder, 2019. "Improving the Life Cycle Impact Assessment of Metal Ecotoxicity: Importance of Chromium Speciation, Water Chemistry, and Metal Release," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    2. Mette Bendixen & Jim Best & Chris Hackney & Lars Lønsmann Iversen, 2019. "Time is running out for sand," Nature, Nature, vol. 571(7763), pages 29-31, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Lei & Linjie Yu & Zhiyu Chen & Wanying Yang & Cheng Deng & Zhuo Tang, 2022. "Carbon Emission Evaluation of Recycled Fine Aggregate Concrete Based on Life Cycle Assessment," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    2. Md. Mahfuzul Islam & A. Aldrie Amir & Rawshan Ara Begum, 2021. "Community awareness towards coastal hazard and adaptation strategies in Pahang coast of Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1593-1620, June.
    3. Yunxin Peng & Adel A. Zadeh & Sheila M. Puffer, 2023. "Unearthing the Construction Industry’s Awareness of and Reactions to the Global Sand Crisis," Sustainability, MDPI, vol. 15(21), pages 1-17, November.
    4. Angel Villabona-Ortíz & Candelaria Tejada-Tovar & Ángel Darío González-Delgado, 2023. "Statistical Modelling of Biosorptive Removal of Hexavalent Chromium Using Dry Raw Biomasses of Dioscorea rotundata , Elaeis guineensis , Manihot esculenta , Theobroma cacao and Zea mays," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    5. Víctor Gallardo Zavaleta & Luzma Fabiola Nava & Edith Kauffer & Octavio González Santana, 2023. "Local Knowledge of Sediment Exploitation in the Usumacinta River Basin: A Theoretical–Methodological Framework Proposal," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    6. Marschke, Melissa & Rousseau, Jean-François, 2022. "Sand ecologies, livelihoods and governance in Asia: A systematic scoping review," Resources Policy, Elsevier, vol. 77(C).
    7. Jessica L. Raff & Steven L. Goodbred & Jennifer L. Pickering & Ryan S. Sincavage & John C. Ayers & Md. Saddam Hossain & Carol A. Wilson & Chris Paola & Michael S. Steckler & Dhiman R. Mondal & Jean-Lo, 2023. "Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Walter Leal Filho & Julian Hunt & Alexandros Lingos & Johannes Platje & Lara Werncke Vieira & Markus Will & Marius Dan Gavriletea, 2021. "The Unsustainable Use of Sand: Reporting on a Global Problem," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    10. Arpita Bisht & Joan Martinez‐Alier, 2023. "Coastal sand mining of heavy mineral sands: Contestations, resistance, and ecological distribution conflicts at HMS extraction frontiers across the world," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 238-253, February.
    11. Rajiv Sinha & Kanchan Mishra & Priyesh Salunke & Vidya Sounderajan, 2023. "Sustainable Silt Management in the Lower Kosi River, North Bihar, India: Demand Assessment, Investment Model and Socio-Economic Development," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    12. Maria E. Sosa & Claudio J. Zega, 2023. "Experimental and Estimated Evaluation of Drying Shrinkage of Concrete Made with Fine Recycled Aggregates," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    13. José Alberto Herrera-Melián & Mónica Mendoza-Aguiar & Rayco Guedes-Alonso & Pilar García-Jiménez & Marina Carrasco-Acosta & Ezio Ranieri, 2020. "Multistage Horizontal Subsurface Flow vs. Hybrid Constructed Wetlands for the Treatment of Raw Urban Wastewater," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    14. Pia Minixhofer & Bernhard Scharf & Sebastian Hafner & Oliver Weiss & Christina Henöckl & Moritz Greiner & Thomas Room & Rosemarie Stangl, 2022. "Towards the Circular Soil Concept: Optimization of Engineered Soils for Green Infrastructure Application," Sustainability, MDPI, vol. 14(2), pages 1-24, January.
    15. Bisht, Arpita, 2022. "Sand futures: Post-growth alternatives for mineral aggregate consumption and distribution in the global south," Ecological Economics, Elsevier, vol. 191(C).
    16. Sally Brown & Katie Jenkins & Philip Goodwin & Daniel Lincke & Athanasios T. Vafeidis & Richard S. J. Tol & Rhosanna Jenkins & Rachel Warren & Robert J. Nicholls & Svetlana Jevrejeva & Agustin Sanchez, 2021. "Global costs of protecting against sea-level rise at 1.5 to 4.0 °C," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    17. Natalia Pires Martins & Sumit Srivastava & Francisco Veiga Simão & He Niu & Priyadharshini Perumal & Ruben Snellings & Mirja Illikainen & Hilde Chambart & Guillaume Habert, 2021. "Exploring the Potential for Utilization of Medium and Highly Sulfidic Mine Tailings in Construction Materials: A Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    18. Chengjin Jiang & Tianyu Li & Ao Yang & Jiahui Qi & Hongbo Liu, 2024. "Impact of Graphite-Associated Waste as a Sustainable Aggregate on UHPC Performance," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    19. Daniel M. Franks & Julia Keenan & Degol Hailu, 2023. "Mineral security essential to achieving the Sustainable Development Goals," Nature Sustainability, Nature, vol. 6(1), pages 21-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3328-:d:1376597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.