IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14448-d962577.html
   My bibliography  Save this article

Carbon Emission Evaluation of Recycled Fine Aggregate Concrete Based on Life Cycle Assessment

Author

Listed:
  • Bin Lei

    (School of Building Engineering, Nanchang University, Nanchang 330031, China)

  • Linjie Yu

    (School of Building Engineering, Nanchang University, Nanchang 330031, China)

  • Zhiyu Chen

    (School of Building Engineering, Nanchang University, Nanchang 330031, China)

  • Wanying Yang

    (School of Building Engineering, Nanchang University, Nanchang 330031, China)

  • Cheng Deng

    (School of Building Engineering, Nanchang University, Nanchang 330031, China)

  • Zhuo Tang

    (School of Civil Engineering, Central South University, Changsha 410004, China)

Abstract

This study conducts a life cycle assessment (LCA) of carbon emissions for recycled fine aggregate (RFA) concrete. There were six stages involved in the life cycle of RFA, including raw material extraction and processing, transportation to the manufacture, RFA concrete manufacturing, transportation to the building site, construction, and de-construction or demolition. The carbon uptake effect, due to the carbonation of RFA concrete, was also considered. The concept of “carbon-strength ratio” was introduced to comprehensively evaluate the carbon emission of RFA with different strengths. Sensitivity analysis was performed on the key parameters, including the water-to-cement ratio, RFA replacement ratio, and transportation distance, by employing three sensitivity coefficients. The results show that, under a certain water-to-cement ratio, the increase in RFA replacement ratio would decrease the carbon emission but increase the carbon-strength ratio. The higher the replacement ratio of RFA, the more sensitive the carbon emission of RFA concrete is to the change in transportation distance. Under a certain 28-day cubic compressive strength, the higher the RFA replacement ratio, the higher the carbon emission. The sensitivity analysis demonstrates that the carbon emission was the most sensitive to the water-to-cement ratio, which was followed by the RFA replacement ratio and transportation distance.

Suggested Citation

  • Bin Lei & Linjie Yu & Zhiyu Chen & Wanying Yang & Cheng Deng & Zhuo Tang, 2022. "Carbon Emission Evaluation of Recycled Fine Aggregate Concrete Based on Life Cycle Assessment," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14448-:d:962577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wajeeha Mahmood & Asad-ur-Rehman Khan & Tehmina Ayub, 2021. "Carbonation Resistance in Ordinary Portland Cement Concrete with and without Recycled Coarse Aggregate in Natural and Simulated Environment," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    2. Mette Bendixen & Jim Best & Chris Hackney & Lars Lønsmann Iversen, 2019. "Time is running out for sand," Nature, Nature, vol. 571(7763), pages 29-31, July.
    3. Xianzheng Gong & Zuoren Nie & Zhihong Wang & Suping Cui & Feng Gao & Tieyong Zuo, 2012. "Life Cycle Energy Consumption and Carbon Dioxide Emission of Residential Building Designs in Beijing," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 576-587, August.
    4. Dandan Shi & Qingxuan Shi, 2022. "Study on Mechanical Properties and Mesoscopic Numerical Simulation of Recycled Concrete," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Shiqing Yang & Mingjie Gu & Hongyi Lin & Yue Gong, 2023. "Property Improvement of Recycled Coarse Aggregate by Accelerated Carbonation Treatment under Different Curing Conditions," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Mahfuzul Islam & A. Aldrie Amir & Rawshan Ara Begum, 2021. "Community awareness towards coastal hazard and adaptation strategies in Pahang coast of Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1593-1620, June.
    2. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    3. Yunxin Peng & Adel A. Zadeh & Sheila M. Puffer, 2023. "Unearthing the Construction Industry’s Awareness of and Reactions to the Global Sand Crisis," Sustainability, MDPI, vol. 15(21), pages 1-17, November.
    4. Víctor Gallardo Zavaleta & Luzma Fabiola Nava & Edith Kauffer & Octavio González Santana, 2023. "Local Knowledge of Sediment Exploitation in the Usumacinta River Basin: A Theoretical–Methodological Framework Proposal," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    5. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    6. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    7. Libiao Bai & Hailing Wang & Chunming Shi & Qiang Du & Yi Li, 2017. "Assessment of SIP Buildings for Sustainable Development in Rural China Using AHP-Grey Correlation Analysis," IJERPH, MDPI, vol. 14(11), pages 1-12, October.
    8. Marschke, Melissa & Rousseau, Jean-François, 2022. "Sand ecologies, livelihoods and governance in Asia: A systematic scoping review," Resources Policy, Elsevier, vol. 77(C).
    9. Jessica L. Raff & Steven L. Goodbred & Jennifer L. Pickering & Ryan S. Sincavage & John C. Ayers & Md. Saddam Hossain & Carol A. Wilson & Chris Paola & Michael S. Steckler & Dhiman R. Mondal & Jean-Lo, 2023. "Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Marina Nikolić Topalović & Milenko Stanković & Goran Ćirović & Dragan Pamučar, 2018. "Comparison of the Applied Measures on the Simulated Scenarios for the Sustainable Building Construction through Carbon Footprint Emissions—Case Study of Building Construction in Serbia," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    11. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Walter Leal Filho & Julian Hunt & Alexandros Lingos & Johannes Platje & Lara Werncke Vieira & Markus Will & Marius Dan Gavriletea, 2021. "The Unsustainable Use of Sand: Reporting on a Global Problem," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    13. Arpita Bisht & Joan Martinez‐Alier, 2023. "Coastal sand mining of heavy mineral sands: Contestations, resistance, and ecological distribution conflicts at HMS extraction frontiers across the world," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 238-253, February.
    14. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2013. "Life-cycle energy of residential buildings in China," Energy Policy, Elsevier, vol. 62(C), pages 656-664.
    15. Rajiv Sinha & Kanchan Mishra & Priyesh Salunke & Vidya Sounderajan, 2023. "Sustainable Silt Management in the Lower Kosi River, North Bihar, India: Demand Assessment, Investment Model and Socio-Economic Development," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    16. Haibo Guo & Ying Liu & Wen-Shao Chang & Yu Shao & Cheng Sun, 2017. "Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    17. Ying Liu & Haibo Guo & Cheng Sun & Wen-Shao Chang, 2016. "Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach," Sustainability, MDPI, vol. 8(10), pages 1-13, October.
    18. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    19. Maria E. Sosa & Claudio J. Zega, 2023. "Experimental and Estimated Evaluation of Drying Shrinkage of Concrete Made with Fine Recycled Aggregates," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    20. José Alberto Herrera-Melián & Mónica Mendoza-Aguiar & Rayco Guedes-Alonso & Pilar García-Jiménez & Marina Carrasco-Acosta & Ezio Ranieri, 2020. "Multistage Horizontal Subsurface Flow vs. Hybrid Constructed Wetlands for the Treatment of Raw Urban Wastewater," Sustainability, MDPI, vol. 12(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14448-:d:962577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.