IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3249-d1374975.html
   My bibliography  Save this article

Sustainable Design of Vertical Greenery Systems: A Comprehensive Framework

Author

Listed:
  • Mitra Manouchehri

    (Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Joaquín Santiago López

    (Departamento de Lingüística Aplicada a la Ciencia y a la Tecnología, Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Mercedes Valiente López

    (Departamento de Tecnología de la Edificación, Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

Abstract

The greening of buildings’ facades is not a new practice; it has been used since ancient times for protection and aesthetic purposes. Nowadays, the approach used towards the greening of facades has changed considerably. Vertical greenery systems (VGS) have been proposed as one of the innovative solutions to promote sustainable building functions. Present-day facade greenery not only offers traditional architectural potential but also incorporates advanced materials and technologies to adapt to the requirements of modern urban life. In recent years, the number of buildings that use this technology has increased considerably, and accordingly, the technology involved and the methods of application have changed to be in line with the new necessities. Various types of VGS have been introduced to provide users with a wider range of options that are applicable in different climates and conditions. As a result, different methods of VGS implementation have been adopted; however, there is no established standardization for VGS designs or their variations. Choosing the proper type of VGS is a crucial step in the decision-making process for VGS design. In this research, we provide an overview of the most significant existing classifications of vertical greenery systems and propose a comprehensive classification based on an analysis of their features and classification criteria. Moreover, influential factors in VGS design are investigated. This article presents a comprehensive framework for the sustainable design of vertical greenery systems by outlining the primary parameters that are crucial to identifying and selecting the most suitable type of VGS. The framework also incorporates design aspects, thus stressing the necessity of considering changes to attributes that could affect the overall functionality of a VGS and, as a result, impact the decision-making process. The results of this study provide a valuable resource to systematically study greenery systems, and their parameters, and also to make informed decisions that are aligned with current the sustainability objectives of future research in terms of cost, energy consumption, and maintenance.

Suggested Citation

  • Mitra Manouchehri & Joaquín Santiago López & Mercedes Valiente López, 2024. "Sustainable Design of Vertical Greenery Systems: A Comprehensive Framework," Sustainability, MDPI, vol. 16(8), pages 1-28, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3249-:d:1374975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez, Gabriel & Rincón, Lídia & Vila, Anna & González, Josep M. & Cabeza, Luisa F., 2011. "Green vertical systems for buildings as passive systems for energy savings," Applied Energy, Elsevier, vol. 88(12), pages 4854-4859.
    2. Peter J. Irga & Fraser R. Torpy & Daniel Griffin & Sara J. Wilkinson, 2023. "Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    3. Dushan Fernando & Satheeskumar Navaratnam & Pathmanathan Rajeev & Jay Sanjayan, 2023. "Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    4. Jutta Hollands & Azra Korjenic, 2021. "Evaluation and Planning Decision on Façade Greening Made Easy—Integration in BIM and Implementation of an Automated Design Process," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    3. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Murilo Cruciol-Barbosa & Maria Solange Gurgel de Castro Fontes & Maximiliano dos Anjos Azambuja, 2023. "Experimental Assessment of the Thermal Influence of a Continuous Living Wall in a Subtropical Climate in Brazil," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    6. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    7. Jon Laurenz & Jone Belausteguigoitia & Ander de la Fuente & Daniel Roehr, 2021. "Green Urban (RE) Generation: A Research and Practice Methodology to Better Implement Green Urban Infrastructure Solutions," Land, MDPI, vol. 10(12), pages 1-24, December.
    8. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    9. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    10. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    11. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    12. Coma, Julià & Chàfer, Marta & Pérez, Gabriel & Cabeza, Luisa F., 2020. "How internal heat loads of buildings affect the effectiveness of vertical greenery systems? An experimental study," Renewable Energy, Elsevier, vol. 151(C), pages 919-930.
    13. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    14. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    15. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    16. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    17. Christian Nansen, 2024. "Active Learning, Living Laboratories, Student Empowerment, and Urban Sustainability," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
    18. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    19. Xiang Liu & Wanjiang Wang & Yingjie Ding & Kun Wang & Jie Li & Han Cha & Yeriken Saierpeng, 2024. "Research on the Design Strategy of Double–Skin Facade in Cold and Frigid Regions—Using Xinjiang Public Buildings as an Example," Sustainability, MDPI, vol. 16(11), pages 1-30, June.
    20. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3249-:d:1374975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.