IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3225-d1374469.html
   My bibliography  Save this article

Distributed Optimization of Multi-Microgrid Integrated Energy System with Coordinated Control of Energy Storage and Carbon Emissions

Author

Listed:
  • Linjun Shi

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Zimeng Cen

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Yang Li

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Feng Wu

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Keman Lin

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Dongmei Yang

    (State Key Laboratory of Smart Grid Protection and Control, Nari Group Corporation, Nanjing 211106, China)

Abstract

The mutual optimization of a multi-microgrid integrated energy system (MMIES) can effectively improve the overall economic and environmental benefits, contributing to sustainability. Targeting a scenario in which an MMIES is connected to the same node, an energy storage coordination control strategy and carbon emissions management strategy are proposed, and an adaptive step-size method is applied to improve the distributed optimization of MMIESs based on the alternating direction multiplier method (ADMM). Firstly, the basic framework of MMIESs is established, and a coordinated control strategy limiting the time of charge and the discharge of the battery storage system (BSS) is proposed. Then a multi-objective optimization model based on operating and environmental cost is formulated. Considering that different microgrids may be managed by different operators and a different convergence speed of multi-objective optimization iteration, an adaptive step-size distributed iterative optimization method based on ADMM is used, which can effectively reduce the cost and protect the privacy of each microgrid. Finally, a system composed of three microgrids is taken as an example for simulation analysis. The results of distributed optimization are accurate, and the proposed coordinated control strategy can effectively enhance the revenue of ESS, which verifies the effectiveness of the proposed method.

Suggested Citation

  • Linjun Shi & Zimeng Cen & Yang Li & Feng Wu & Keman Lin & Dongmei Yang, 2024. "Distributed Optimization of Multi-Microgrid Integrated Energy System with Coordinated Control of Energy Storage and Carbon Emissions," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3225-:d:1374469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Gao, Hongjun & Xu, Song & Liu, Youbo & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Decentralized optimal operation model for cooperative microgrids considering renewable energy uncertainties," Applied Energy, Elsevier, vol. 262(C).
    3. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    2. Zhou, Dezhi & Wu, Chuantao & Sui, Quan & Lin, Xiangning & Li, Zhengtian, 2022. "A novel all-electric-ship-integrated energy cooperation coalition for multi-island microgrids," Applied Energy, Elsevier, vol. 320(C).
    3. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    4. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    5. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    6. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    7. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    8. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    9. Chen, Yuzhu & Guo, Weimin & Zhang, Tianhu & Lund, Peter D. & Wang, Jun & Yang, Kun, 2024. "Carbon and economic prices optimization of a solar-gas coupling energy system with a modified non-dominated sorting genetic algorithm considering operating sequences of water-cooled chillers," Energy, Elsevier, vol. 301(C).
    10. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    11. Jani, Ali & Karimi, Hamid & Jadid, Shahram, 2022. "Two-layer stochastic day-ahead and real-time energy management of networked microgrids considering integration of renewable energy resources," Applied Energy, Elsevier, vol. 323(C).
    12. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).
    13. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    15. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    16. Li, Longxi & Cao, Xilin & Wang, Peng, 2021. "Optimal coordination strategy for multiple distributed energy systems considering supply, demand, and price uncertainties," Energy, Elsevier, vol. 227(C).
    17. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    18. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    20. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3225-:d:1374469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.