IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p3045-d1370844.html
   My bibliography  Save this article

Optimizing Biogas Production and Digestive Stability through Waste Co-Digestion

Author

Listed:
  • Rao Muhammad Ahmad

    (Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan)

  • Sabiha Javied

    (Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan)

  • Ambreen Aslam

    (Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan)

  • Saud Alamri

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Qamar uz Zaman

    (Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan)

  • Ayesha Hassan

    (Energy, Environment and Society, School of Humanities, Social Science and Law, University of Dundee, Dundee DD1 5HW, UK)

  • Nabeela Noor

    (Department of Pharmacy, University of management and Technology, Lahore 54770, Pakistan)

Abstract

This study aimed to enhance the nutrient balance of municipal solid waste (MSW), characterized by a high carbon-to-nitrogen (C/N) ratio, which is a critical factor in the anaerobic digestion process. The investigation involved the addition of MSW, which is rich in carbon content, to food waste (FW) with high nitrogen content. The goal was to determine an optimal co-substrate mixing ratio of MSW and FW for anaerobic co-digestion at mesophilic temperatures, aiming to improve process stability and performance to achieve higher biogas yield. The co-digestion experiments encompassed five mixing ratios of MSW and FW with C/N ratios of 20, 25, 30, 35, and 40 under mesophilic conditions in a laboratory. The results indicated that the highest specific biogas yield, reaching 827 L/kg VS, was attained when the co-substrate feedstock had a balanced C/N ratio of 20, surpassing the 520 L/kg vs. obtained from MSW digestion alone. As the proportion of MSW increased in the co-substrate mixing feedstock, the biogas production rate decreased. Additionally, the study explored the optimal substrate-to-inoculum (S/I) ratio, focusing on the co-substrate feedstock with a C/N ratio of 20. Four S/I ratios (0.5, 1.0, 1.5, and 2.0) were examined, revealing that the highest specific biogas yield, at 642 L/kg VS, occurred at an S/I ratio of 0.5. An accumulation in volatile fatty acids (VFAs) was observed at higher S/I ratios, attributed to the lower abundance of inoculum microorganisms in the anaerobic digestion process. Overall, the findings suggested that the optimum C/N ratio for co-digestion of MSW and FW falls within the range of 20–25/1, while the preferred S/I ratio is 0.5.

Suggested Citation

  • Rao Muhammad Ahmad & Sabiha Javied & Ambreen Aslam & Saud Alamri & Qamar uz Zaman & Ayesha Hassan & Nabeela Noor, 2024. "Optimizing Biogas Production and Digestive Stability through Waste Co-Digestion," Sustainability, MDPI, vol. 16(7), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3045-:d:1370844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/3045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/3045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    2. Meng, Xingyao & Wang, Qingping & Zhao, Xixi & Cai, Yafan & Ma, Xuguang & Fu, Jingyi & Wang, Pan & Wang, Yongjing & Liu, Wei & Ren, Lianhai, 2023. "A review of the technologies used for preserving anaerobic digestion inoculum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    2. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    3. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    4. Sayedin, Farid & Kermanshahi-pour, Azadeh & He, Quan Sophia, 2019. "Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio," Renewable Energy, Elsevier, vol. 135(C), pages 975-983.
    5. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    6. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    7. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.
    8. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    9. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. María Eugenia Beily & Brian Jonathan Young & Patricia Alina Bres & Nicolás Iván Riera & Wenguo Wang & Diana Elvira Crespo & Dimitrios Komilis, 2023. "Relationships among Physicochemical, Microbiological, and Parasitological Parameters, Ecotoxicity, and Biochemical Methane Potential of Pig Slurry," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    11. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.
    12. Tian, Guangliang & Yang, Bin & Dong, Minghua & Zhu, Rui & Yin, Fang & Zhao, Xingling & Wang, Yongxia & Xiao, Wei & Wang, Qiang & Zhang, Wudi & Cui, Xiaolong, 2018. "The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors," Renewable Energy, Elsevier, vol. 123(C), pages 15-25.
    13. Riggio, Vincenzo & Comino, Elena & Rosso, Maurizio, 2015. "Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp," Renewable Energy, Elsevier, vol. 83(C), pages 1043-1049.
    14. Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.
    15. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    16. Browne, James D. & Murphy, Jerry D., 2014. "The impact of increasing organic loading in two phase digestion of food waste," Renewable Energy, Elsevier, vol. 71(C), pages 69-76.
    17. Grosser, Anna, 2018. "Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tes," Energy, Elsevier, vol. 143(C), pages 488-499.
    18. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    19. Anriansyah Renggaman & Hong Lim Choi & Sartika Indah Amalia Sudiarto & Andi Febrisiantosa & Dong Hyoen Ahn & Yong Wook Choung & Arumuganainar Suresh, 2021. "Biochemical Methane Potential of Swine Slaughter Waste, Swine Slurry, and Its Codigestion Effect," Energies, MDPI, vol. 14(21), pages 1-14, October.
    20. Pengfei Li & Wenzhe Li & Mingchao Sun & Xiang Xu & Bo Zhang & Yong Sun, 2018. "Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues," Energies, MDPI, vol. 12(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3045-:d:1370844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.