IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2786-d1365040.html
   My bibliography  Save this article

A Novel Convolutional Neural Net Architecture Based on Incorporating Meteorological Variable Inputs into Ultra-Short-Term Photovoltaic Power Forecasting

Author

Listed:
  • Xiaoying Ren

    (School of New Energy, North China Electric Power University, Beijing 102206, China
    School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China)

  • Fei Zhang

    (School of New Energy, North China Electric Power University, Beijing 102206, China
    School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China)

  • Junshuai Yan

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Yongqian Liu

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

Abstract

Accurate photovoltaic (PV) power forecasting allows for better integration and management of renewable energy sources, which can help to reduce our dependence on finite fossil fuels, drive energy transitions and climate change mitigation, and thus promote the sustainable development of renewable energy sources. A convolutional neural network (CNN) forecasting method with a two-input, two-scale parallel cascade structure is proposed for ultra-short-term PV power forecasting tasks. The dual-input pattern of the model is constructed by integrating the weather variables and the historical power so as to convey finer information about the interaction between the weather variables and the PV power to the model; the design of the two-branch, two-scale CNN model architecture realizes in-depth fusion of the PV system data with the CNN’s feature extraction mechanism. Each branch introduces an attention mechanism (AM) that focuses on the degree of influence between elements within the historical power sequence and the degree of influence of each meteorological variable on the historical power sequence, respectively. Actual operational data from three PV plants under different meteorological conditions are used. Compared with the baseline model, the proposed model shows a better forecasting performance, which provides a new idea for deep-learning-based PV power forecasting techniques, as well as important technical support for a high percentage of PV energy to be connected to the grid, thus promoting the sustainable development of renewable energy.

Suggested Citation

  • Xiaoying Ren & Fei Zhang & Junshuai Yan & Yongqian Liu, 2024. "A Novel Convolutional Neural Net Architecture Based on Incorporating Meteorological Variable Inputs into Ultra-Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2786-:d:1365040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    2. Ren, Xiaoying & Zhang, Fei & Zhu, Honglu & Liu, Yongqian, 2022. "Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting," Applied Energy, Elsevier, vol. 323(C).
    3. Chibuzor N. Obiora & Ali N. Hasan & Ahmed Ali, 2023. "Predicting Solar Irradiance at Several Time Horizons Using Machine Learning Algorithms," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    4. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    5. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Abou Houran, Mohamad & Salman Bukhari, Syed M. & Zafar, Muhammad Hamza & Mansoor, Majad & Chen, Wenjie, 2023. "COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications," Applied Energy, Elsevier, vol. 349(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    2. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    3. Yunzhu Gao & Jun Wang & Lin Guo & Hong Peng, 2024. "Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    4. Xiaoying Ren & Fei Zhang & Yongrui Sun & Yongqian Liu, 2024. "A Novel Dual-Channel Temporal Convolutional Network for Photovoltaic Power Forecasting," Energies, MDPI, vol. 17(3), pages 1-19, February.
    5. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    6. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    7. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    8. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    9. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    10. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    11. Lakhdar Nadjib Boucetta & Youssouf Amrane & Aissa Chouder & Saliha Arezki & Sofiane Kichou, 2024. "Enhanced Forecasting Accuracy of a Grid-Connected Photovoltaic Power Plant: A Novel Approach Using Hybrid Variational Mode Decomposition and a CNN-LSTM Model," Energies, MDPI, vol. 17(7), pages 1-22, April.
    12. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    13. Fei Zhang & Xiaoying Ren & Yongqian Liu, 2024. "A Refined Wind Power Forecasting Method with High Temporal Resolution Based on Light Convolutional Neural Network Architecture," Energies, MDPI, vol. 17(5), pages 1-25, March.
    14. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    15. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    16. Wang, Haoxuan & Chen, Huaian & Wang, Ben & Jin, Yi & Li, Guiqiang & Kan, Yan, 2022. "High-efficiency low-power microdefect detection in photovoltaic cells via a field programmable gate array-accelerated dual-flow network," Applied Energy, Elsevier, vol. 318(C).
    17. Qu, Jiaqi & Qian, Zheng & Pei, Yan, 2021. "Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern," Energy, Elsevier, vol. 232(C).
    18. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    19. Ashish Sedai & Rabin Dhakal & Shishir Gautam & Anibesh Dhamala & Argenis Bilbao & Qin Wang & Adam Wigington & Suhas Pol, 2023. "Performance Analysis of Statistical, Machine Learning and Deep Learning Models in Long-Term Forecasting of Solar Power Production," Forecasting, MDPI, vol. 5(1), pages 1-29, February.
    20. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2786-:d:1365040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.