IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1183-d1349699.html
   My bibliography  Save this article

A Refined Wind Power Forecasting Method with High Temporal Resolution Based on Light Convolutional Neural Network Architecture

Author

Listed:
  • Fei Zhang

    (School of New Energy, North China Electric Power University, Beijing 102206, China
    School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China)

  • Xiaoying Ren

    (School of New Energy, North China Electric Power University, Beijing 102206, China
    School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China)

  • Yongqian Liu

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

Abstract

With a large proportion of wind farms connected to the power grid, it brings more pressure on the stable operation of power systems in shorter time scales. Efficient and accurate scheduling, operation control and decision making require high time resolution power forecasting algorithms with higher accuracy and real-time performance. In this paper, we innovatively propose a high temporal resolution wind power forecasting method based on a light convolutional architecture—DC_LCNN. The method starts from the source data and novelly designs the dual-channel data input mode to provide different combinations of feature data for the model, thus improving the upper limit of the learning ability of the whole model. The dual-channel convolutional neural network (CNN) structure extracts different spatial and temporal constraints of the input features. The light global maximum pooling method replaces the flat operation combined with the fully connected (FC) forecasting method in the traditional CNN, extracts the most significant features of the global method, and directly performs data downscaling at the same time, which significantly improves the forecasting accuracy and efficiency of the model. In this paper, the experiments are carried out on the 1 s resolution data of the actual wind field, and the single-step forecasting task with 1 s ahead of time and the multi-step forecasting task with 1~10 s ahead of time are executed, respectively. Comparing the experimental results with the classical deep learning models in the current field, the proposed model shows absolute accuracy advantages on both forecasting tasks. This also shows that the light architecture design based on simple deep learning models is also a good solution in performing high time resolution wind power forecasting tasks.

Suggested Citation

  • Fei Zhang & Xiaoying Ren & Yongqian Liu, 2024. "A Refined Wind Power Forecasting Method with High Temporal Resolution Based on Light Convolutional Neural Network Architecture," Energies, MDPI, vol. 17(5), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1183-:d:1349699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    2. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    3. Ren, Xiaoying & Zhang, Fei & Zhu, Honglu & Liu, Yongqian, 2022. "Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting," Applied Energy, Elsevier, vol. 323(C).
    4. Abou Houran, Mohamad & Salman Bukhari, Syed M. & Zafar, Muhammad Hamza & Mansoor, Majad & Chen, Wenjie, 2023. "COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications," Applied Energy, Elsevier, vol. 349(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    3. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2019. "Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy," Energies, MDPI, vol. 12(10), pages 1-22, May.
    4. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    5. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    6. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.
    7. Xiaoying Ren & Fei Zhang & Junshuai Yan & Yongqian Liu, 2024. "A Novel Convolutional Neural Net Architecture Based on Incorporating Meteorological Variable Inputs into Ultra-Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
    8. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    9. Wang, Yun & Hu, Qinghua & Meng, Deyu & Zhu, Pengfei, 2017. "Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model," Applied Energy, Elsevier, vol. 208(C), pages 1097-1112.
    10. Yidi Ren & Hua Li & Hsiung-Cheng Lin, 2019. "Optimization of Feedforward Neural Networks Using an Improved Flower Pollination Algorithm for Short-Term Wind Speed Prediction," Energies, MDPI, vol. 12(21), pages 1-17, October.
    11. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    12. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    13. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    14. Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
    15. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    18. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    19. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    20. Ke Yan & Yuting Dai & Meiling Xu & Yuchang Mo, 2019. "Tunnel Surface Settlement Forecasting with Ensemble Learning," Sustainability, MDPI, vol. 12(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1183-:d:1349699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.