IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2523-d1359725.html
   My bibliography  Save this article

Optimizing Biochar Application Rates to Improve Soil Properties and Crop Growth in Saline–Alkali Soil

Author

Listed:
  • Xin Chen

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China)

  • Li Liu

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China)

  • Qinyan Yang

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China)

  • Huanan Xu

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China)

  • Guoqing Shen

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
    Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, The Ministry of Science and Technology, The Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China
    Shanghai Urban Forest Ecosystem Research Station, The National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China)

  • Qincheng Chen

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China)

Abstract

There is great demand for the amelioration of saline–alkali soils, which requires efficient and economical amendments. Biochar addition could alleviate the adverse impacts of saline–alkali stress in crops. However, their efficiency and optimal amounts in saline–alkali soil restoration remain contradictory and inconclusive. The objective of this study was to investigate the effects of biochar application on the properties of saline–alkali soil and crop growth, as well as to determine the optimal application rate of biochar. We conducted pot experiments with biochar (B) application rates, including 0 (CK), 1% (B-1%), 2.5% (B-2.5%), 5% (B-5%), and 10% (B-10%), studying the impact of biochar on soil water content (SWC), soil salinity, soil electrical conductivity (EC), soil ion content, soil nutrients, soil enzyme activity, and crop growth. A four-parameter Gaussian function was established for the curves depicting the relationship between soil salinity characteristics and the biochar application rates to determine the most optimal application rate. The results indicated that: (1) Compared to the CK, all biochar treatments improved soil water-holding capacity and reduced soil Na + content and sodium adsorption ratio (SAR). (2) B-1%, B-2.5%, and B-5% treatments reduced soil content, EC, Cl − , and SO 4 2− content over CK, while the results were reversed for the B-10% treatment. (3) Compared to the CK, all biochar treatments significantly increased soil fertility, enhanced soil enzyme activity (alkaline phosphatase, catalase, and urease activity), and significantly promoted the growth of maize. (4) The results of the Gaussian model suggested that a biochar application rate of 3.16% is the optimal rate for alleviating soil salinity in saline–alkali soils. This research demonstrated the potential of biochar to improve soil properties and promote crop growth and provided useful information on biochar application rates for ameliorating saline–alkali soils.

Suggested Citation

  • Xin Chen & Li Liu & Qinyan Yang & Huanan Xu & Guoqing Shen & Qincheng Chen, 2024. "Optimizing Biochar Application Rates to Improve Soil Properties and Crop Growth in Saline–Alkali Soil," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2523-:d:1359725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaganti, Vijayasatya N. & Crohn, David M. & Šimůnek, Jirka, 2015. "Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 255-265.
    2. Qadir, M. & Sposito, G. & Smith, C.J. & Oster, J.D., 2021. "Reassessing irrigation water quality guidelines for sodicity hazard," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fibrianty Minhal & Azwar Ma'as & Eko Hanudin & Putu Sudira, 2020. "Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clays and organic by-product application," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(2), pages 93-100.
    2. María Alcívar & Andrés Zurita-Silva & Marco Sandoval & Cristina Muñoz & Mauricio Schoebitz, 2018. "Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    3. Yue Zhang & Shihao Miao & Yang Song & Xudong Wang & Feng Jin, 2024. "Biochar Application Reduces Saline–Alkali Stress by Improving Soil Functions and Regulating the Diversity and Abundance of Soil Bacterial Community in Highly Saline–Alkali Paddy Field," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    4. Das, Bianca T. & Menzies, Neal W. & Dalzell, Scott A. & McKenna, Brigid A. & Kopittke, Peter M., 2022. "Avoiding the point of no return: Maintaining infiltration to remediate saline-sodic Vertosols in high rainfall environments," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Mohamed M. Saffan & Mohamed A. Koriem & Ahmed El-Henawy & Shimaa El-Mahdy & Hassan El-Ramady & Fathy Elbehiry & Alaa El-Dein Omara & Yousry Bayoumi & Khandsuren Badgar & József Prokisch, 2022. "Sustainable Production of Tomato Plants ( Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    6. Sheoran, Parvender & Basak, Nirmalendu & Kumar, Ashwani & Yadav, R.K. & Singh, Randhir & Sharma, Raman & Kumar, Satyendra & Singh, Ranjay K. & Sharma, P.C., 2021. "Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Muhammad Naveed & Haroon Sajid & Adnan Mustafa & Bushra Niamat & Zulfiqar Ahmad & Muhammad Yaseen & Muhammad Kamran & Munazza Rafique & Sunny Ahmar & Jen-Tsung Chen, 2020. "Alleviation of Salinity-Induced Oxidative Stress, Improvement in Growth, Physiology and Mineral Nutrition of Canola ( Brassica napus L.) through Calcium-Fortified Composted Animal Manure," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    8. Cao, Yune & Gao, Yanming & Li, Jianshe & Tian, Yongqiang, 2019. "Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    10. Xia An & Qin Liu & Feixiang Pan & Yu Yao & Xiahong Luo & Changli Chen & Tingting Liu & Lina Zou & Weidong Wang & Jinwang Wang & Xing Liu, 2023. "Research Advances in the Impacts of Biochar on the Physicochemical Properties and Microbial Communities of Saline Soils," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    11. Demis Andrade Foronda & Gilles Colinet, 2022. "Combined Application of Organic Amendments and Gypsum to Reclaim Saline–Alkali Soil," Agriculture, MDPI, vol. 12(7), pages 1-10, July.
    12. Chaganti, Vijayasatya N. & Ganjegunte, Girisha & Niu, Genhua & Ulery, April & Flynn, Robert & Enciso, Juan M. & Meki, Manyowa N. & Kiniry, James R., 2020. "Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2523-:d:1359725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.